Chapter 07
Fluids and Medications

Objectives

- Define the following terms: chronotrope, dromotrope, and inotrope.
- Identify the primary neurotransmitter for the sympathetic and parasympathetic divisions of the autonomic nervous system.
- Describe the location and effects of stimulation of alpha, beta, and dopaminergic receptors.
- Describe advantages and disadvantages associated with pediatric medication administration routes.

Objectives

- Define the terms pain, sedation, analgesia, amnesia, and anesthesia.
- Describe two tools that may be used to assess pain in the pediatric patient.
- Explain the importance of pain management.
- Describe techniques for nonpharmacologic management of pain in infants and children.
- Discuss common pharmacologic agents used in pain management and sedation.
Objectives

- Describe the levels of sedation/analgesia.
- Identify factors that may increase the risk of complications during sedation/analgesia.
- Explain the importance of post-sedation monitoring.

Review of the Autonomic Nervous System

NERVOUS SYSTEM

Central nervous system
 - Brain
 - Spinal cord

Peripheral nervous system
 - Somatic
 - Autonomic
 - Adrenergic (sympathetic)
 - Cholinergic (parasympathetic)
 - Alpha receptors
 - Beta receptors
Baroreceptor Reflex

ANS Innervation
Red = Sympathetic; Blue = Parasympathetic

Sympathetic Stimulation
- Norepinephrine
 - Neurotransmitter
 - Released when sympathetic nerve fibers are stimulated
 - Binds to receptor sites found in plasma membrane of cells
Sympathetic Receptor Sites

- Alpha
- Beta
- Dopaminergic

Sympathetic Receptor Sites

- Alpha receptor sites
 - Alpha-1
 - Located in vascular smooth muscle
 - Stimulation results in vasoconstriction
 - Alpha-2
 - Located in skeletal blood vessels
 - Inhibit release of norepinephrine

Sympathetic Receptor Sites

- Beta receptor sites
 - Beta-1
 - Beta-2
Sympathetic Receptor Sites

- Beta-1 receptor sites
 - One heart
 - Stimulation results in:
 - Increased heart rate
 - Increased force of contraction
 - Increased AV conduction velocity

Sympathetic Receptor Sites

- Beta-2 receptor sites (two lungs)
 - Located in:
 - Bronchiolar and arterial smooth muscle
 - Stimulation results in:
 - Relaxation of the bronchi
 - Vasodilation

Sympathetic Receptor Sites

- Dopaminergic
 - Located in the coronary arteries, renal, mesenteric, and visceral blood vessels
 - Stimulation results in dilation
Chronotropic Effect
- Refers to changes in heart rate
 - Positive chronotropic effect
 - Increased heart rate
 - Negative chronotropic effect
 - Decreased heart rate

Inotropic Effect
- Refers to changes in myocardial contractility
 - Positive inotropic effect
 - Increased contractility
 - Negative inotropic effect
 - Decreased contractility

Dromotropic Effect
- Refers to a medication’s effects on the conduction velocity of an impulse through the AV node
 - Positive dromotropic effect
 - Increased conduction velocity
 - Negative dromotropic effect
 - Decreased conduction velocity
Volume Expansion

Crystalloid Solutions

- Description
 - Isotonic solutions
 - Provide transient expansion of intravascular volume

- Examples
 - Normal saline
 - Contains sodium chloride in water
 - Ringer’s lactate
 - Contains sodium chloride, potassium chloride, calcium chloride, and sodium lactate in water

Colloid Solutions

- Contain molecules (typically proteins) that are too large to pass out of the capillary membranes
 - Remain in the vascular compartment
 - Draw fluid from the interstitial and intracellular compartments to expand the intravascular volume
Blood

- Indications
 - Correction of a deficiency or functional defect of a blood component that has caused a clinically significant problem
 - Severe acute hemorrhage

Blood

- Red blood cells (RBCs)
 - Most frequently transfused blood component
 - Reasons for administration
 * Increase oxygen-carrying capacity of the blood
 * Maintain satisfactory tissue oxygenation

Medication Administration
Routes of Medication Administration

- Medication routes used in the pediatric patient:
 - Oral
 - Transmucosal
 - Intranasal
 - Rectal
 - Pulmonary
 - Subcutaneous
 - Intramuscular
 - Intravenous
 - Intraosseous
 - Tracheal

Oral Medication Administration

- Advantages
 - Readily available route of administration
 - Patient acceptance; painless
 - Convenient, noninvasive
 - Does not generally require special equipment for administration
 - No risk of fluid overload, infection, or embolism as with IV medications

- Disadvantages
 - Requires functioning GI tract and sufficient GI tract for absorption to occur
 - Slow or erratic absorption following ingestion
 - Limited value in an emergent situation
 - Requires a responsive, cooperative patient with an intact gag reflex
 - May cause gagging or aspiration if administered too rapidly
Oral Medication Administration

- Do not administer oral medications in solid form (i.e., pills, capsules, tablets) to young children because of the danger of aspiration
- A tuberculin syringe (needle removed) is ideal for administering liquid medications of 1 mL or less

Transmucosal (Sublingual, Buccal) Medication Administration

- Advantages
 - Readily available route of administration
 - Ease of administration
 - Painless
 - Rapid onset of action
- Examples
 - Sedatives

- Disadvantages
 - Requires a responsive, cooperative patient with an intact gag reflex
 - Unsuitable for very young patients who may not understand your instructions
 - Limited number of medications that can be administered via this route
 - Variable absorption
Transmucosal (Sublingual, Buccal) Medication Administration

- Mucosal surfaces typically have a rich blood supply, allowing rapid drug transport to the systemic circulation.

Intranasal Medication Administration

- Advantages
 - Easy to administer
 - Rapid, reliable onset of action
 - Relatively painless
 - Obviates need for painful injections

- Examples
 - Fentanyl, midazolam, steroids

Intranasal Medication Administration

- Disadvantages
 - Some medications (e.g., midazolam) are associated with a burning sensation and lacrimation when administered intranasally
 - Limited number of medications that can be administered via this route
 - May cause gagging or aspiration if administered too rapidly

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
Rectal Medication Administration

- **Advantages**
 - Route is always available
 - More easily accessible route during active seizures than IV route
 - Rapid absorption
 - Relatively painless

- **Examples**
 - Anticonvulsants, antipyretics, antiemetics, analgesics, sedatives

- **Disadvantages**
 - Limited number of medications that can be administered via this route
 - If the rectum is not empty when the medication is inserted, drug absorption may be delayed, diminished, or prevented
 - Most children dislike this route of administration

Pulmonary (Inhaled) Medication Administration

- **Advantages**
 - Painless
 - Ease of administration
 - Rapid onset of action

- **Examples**
 - Oxygen, bronchodilators, nitrous oxide, steroids, antibiotics, antivirals
Pulmonary (Inhaled) Medication Administration

- Disadvantages
 - Limited use with respiratory failure
 - Medications used are limited to those with actions on or absorption through the respiratory tract

Subcutaneous (SubQ) Medication Administration

- Advantages
 - Readily available route
 - Allows delivery of a variety of medications
 - Less painful than IM injection

- Examples
 - Heparin, morphine, insulin, some vaccines, epinephrine, allergy desensitization, hormone replacement

- Disadvantages
 - Painful; creates fear and anxiety in children and may cause a child to deny pain in order to avoid further injections of analgesics
 - Inconvenient, time consuming
 - Requires technical expertise to perform
 - Volume of medication that can be delivered is limited to 0.5 to 1.0 mL (maximum of 1 mL in all age groups)
 - Slower onset and lower peak effects than IV administration
 - Can cause local tissue injury and nerve damage if improper technique used
Subcutaneous (SubQ) Medication Administration

- Common SubQ sites
 1. Lateral aspect of upper arms
 2. Abdomen from costal margins to iliac crests
 3. Anterior thighs

Intramuscular Medication Administration

- Advantages
 - Readily available route
 - Allows delivery of a variety of medications

- Examples
 - Antibiotics, some vaccines, sedatives, analgesics

- Disadvantages
 - Painful, creates fear and anxiety in children and may cause a child to deny pain in order to avoid further injections of analgesics
 - Erratic absorption may cause discontinuous levels of analgesia
 - Requires technical expertise to perform
Intramuscular Medication Administration

- Grasp the muscle between your thumb and index finger to isolate and stabilize it

IM Injection Sites in Children

- Vastus lateralis

IM Injection Sites in Children

- Ventrogluteal
IM Injection Sites in Children

- **Dorsogluteal**

IV Medication Administration

- **Advantages**
 - Rapid onset of action for medications administered via this route
 - Route is easily accessible
 - Control over the level of the drug in the blood
 - Particularly useful for resuscitation medications and fluids

- **Examples**
 - Antiarrhythmics, sedatives, analgesics, antibiotics
IV Medication Administration

- Disadvantages
 - Painful
 - Limits patient mobility
 - Time consuming
 - Requires technical expertise to perform

Tracheal Medication Administration

- Advantages
 - Permits delivery of lipid-soluble medications into the pulmonary alveoli and systemic circulation via lung capillaries

- Disadvantages
 - Limited number of medications that can be administered via this route
 - Medication absorption may be negatively affected by the presence of blood, emesis, or secretions in the trachea or tracheal tube
 - No fluid resuscitation possible via this route
Tracheal Medication Administration

- Use this route for medication administration during resuscitation efforts if a tracheal tube is in place but IV or IO access is not available
- Tracheal medications should be diluted with approximately 5 mL of sterile NS

Considerations in Pediatric Medication Administration

- Use a length-based resuscitation tape to determine the correct dosage for medication administration or fluid resuscitation in children
Pediatric Medication Administration

- Check each medication at least three times before administering it:
 1. When removing it from its storage container (i.e., drug box, code cart)
 2. When preparing it for administration
 3. At the patient’s side before administering it

- Question any medication dosage that is outside the normal range

- Using age-appropriate language, explain to the child (and parents) why a medication is necessary

- Children should always be praised for cooperating in taking their medications
Pain Management and Sedation

Pain Assessment

- Pain should be assessed in all patients
- Methods used for assessment will vary according to age
 - Facial expression is most consistent behavioral indicator of pain in infants
- Reassessment is essential

Pain Assessment

- QUESTT:
 - Question the child
 - Use pain rating scales
 - Evaluate behavior and physiologic changes
 - Secure parents’ involvement
 - Take cause of pain into account
 - Take action

Pain Assessment

- Wong-Baker FACES Pain Rating Scale
- To use this scale, point to each face using the words to describe the pain intensity.
- Ask the child to choose the face that best describes his or her own pain and record the appropriate number.

<table>
<thead>
<tr>
<th>Category</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>No particular expression or smile</td>
<td>Occasional grimace or frown, withdrawn, resistant</td>
<td>Frequent to constant quivering chin, clenched jaw</td>
</tr>
<tr>
<td>Legs</td>
<td>Normal position or relaxed</td>
<td>Uneasy, restless, tense</td>
<td>Kicking, or legs drawn up</td>
</tr>
<tr>
<td>Activity</td>
<td>Lying quietly, normal position, moves easily</td>
<td>Squeezing, shifting back and forth, tense</td>
<td>Arched, rigid or jerking</td>
</tr>
<tr>
<td>Cry</td>
<td>No cry (awake or asleep)</td>
<td>Moans or whimpers; occasional complaint</td>
<td>Crying steadily, screams or sobs, frequent complaints</td>
</tr>
<tr>
<td>Consolability</td>
<td>Content, relaxed</td>
<td>Resistant to occasional touching, hugging, or being talked to, distractible</td>
<td>Difficult to console or comfort</td>
</tr>
</tbody>
</table>

Sedation

- Sedation may be used to:
 - Help control anxiety or fear
 - Combat effects of toxic ingestions or withdrawal syndromes
 - Promote sleep
 - Decrease physical activity, metabolism, or oxygen consumption
 - Provide amnesia during procedures and neuromuscular paralysis
 - Facilitate management of mechanical ventilation

Peds Pearl

- Analgesics used to manage severe pain usually cause sedation, but most sedatives do not provide analgesia.

Sedation

- If a procedure is not painful, a sedative is typically used.
- If pain is expected, analgesics are used, usually in conjunction with a sedative.
- When selecting medications, consider the duration of action of the sedatives/analgesics and the duration of procedure.
Levels of Sedation/Analgesia

- Minimal sedation/analgesia
 - Anxiety reduction; cognitive function and coordination may be impaired
 - Protective reflexes present
 - Able to maintain patent airway independently and continuously
 - Able to respond appropriately to verbal command (e.g., "Open your eyes")
 - Ventilatory and cardiovascular functions intact

- Moderate sedation/analgesia
 - Minimally depressed level of consciousness
 - Protective reflexes present; able to maintain patent airway independently and continuously
 - Spontaneous ventilation is adequate
 - Able to respond purposefully to verbal command (e.g., "Open your eyes"), either alone or accompanied by light tactile stimulation
 - Reflex withdrawal from a painful stimulus is NOT considered a purposeful response
 - Cardiovascular function is usually maintained
Levels of Sedation/Analgesia

- General anesthesia
 - Drug-induced state of unconsciousness
 - Unable to maintain patent airway independently
 - Not arousable, even by painful stimulation
 - Ability to maintain ventilatory function independently is often impaired
 - Cardiovascular function may be impaired

Patient Monitoring and Documentation

- Patient monitoring
 - Should begin before medications are administered
 - Should continue until the patient returns to his or her presedation level and recovery is complete

- The following must be monitored and documented:
 - Vital signs
 - Monitor and document
 - Every 5 to 10 min during minimal and moderate sedation/analgesia
 - At least every 5 min during deep sedation/analgesia
 - Medications
 - Names, dosages, route, time, effects of administration
 - Sedation level and level of consciousness
Patient Monitoring and Documentation

- The following must be monitored and documented:
 - Airway patency, work of breathing, respiratory pattern
 - Any adverse effects
 - Apnea
 - Hypoxia
 - Tachycardia or bradycardia
 - Hypotension
 - Emesis
 - Any necessary interventions and resolutions

Questions?