Chapter 08
Trauma and Burns

Objectives
- Identify common mechanisms and types of injury in infants and children.
- Explain the difference between primary and secondary brain injury.
- Compare and contrast an epidural hematoma and subdural hematoma.
- Explain the initial management of the patient with a head injury.

Objectives
- Explain mechanisms of injury that indicate spinal stabilization may be required.
- Differentiate the clinical presentation of neurogenic shock from hypovolemic shock.
- Explain the pathophysiology and initial management of a flail chest, open pneumothorax, tension pneumothorax, pulmonary contusion, and traumatic asphyxia.
Objectives

- State the immediately life-threatening and potentially life-threatening thoracic injuries.
- Predict abdominal injuries based on blunt and penetrating mechanisms of injury.
- Discuss mechanisms of burn injuries.
- Identify and describe the depth classifications of burn injuries.

Objectives

- Describe how to determine the body surface area percentage of a burn injury by using the "rule of nines" and the "rule of palms."
- Describe the initial management of a thermal burn injury.

Penetrating Trauma

- Penetrating trauma
 - Any mechanism of injury that causes a cut or piercing of the skin
 - Typically results from a gunshot, stab wound, or blast injury
 - May also result from a child's toy or foreign body
Penetrating Trauma

- Usually affects organs and tissues in the direct path of the wounding object
- Severity of a knife wound depends on:
 - Length of the blade
 - Angle of penetration
 - Area of the body pierced with the knife
 - Motion applied to the blade

Penetrating Trauma

- Severity of a firearm injury is related to:
 - The size or caliber of the bullet
 - Alteration in the trajectory of the bullet within the body
 - The bullet’s velocity
 - The distance of the victim from the weapon

Blunt Trauma

- Blunt trauma
 - Any mechanism of injury that occurs without actual penetration of the body
 - Motor vehicle crashes
 - Falls
 - Sports injuries
 - Assaults with a blunt object
Blunt Trauma

- Produces injury first to the body surface and then to the body’s contents
 - Results in compression and/or stretching of the tissue beneath the skin
- Amount of injury depends on:
 - Length of time of compression
 - Force of compression
 - Area compressed

Motor Vehicle Crashes

- Three separate impacts occur as kinetic energy is transferred:
 1. The vehicle strikes an object
 2. The occupant collides with the interior of the vehicle
 - Includes a seatbelt, airbag, or the dashboard
 3. Internal organs collide with other organs, muscle, bone, or other supporting structures inside the body
 - Lungs, brain, liver, and spleen are particularly vulnerable to this trauma
 4. A fourth impact may occur if loose objects in the vehicle become projectiles

Motor Vehicle Crashes

- Resulting injuries depend on the:
 - Type of collision
 - Position of the occupant inside the vehicle
 - Use or nonuse of active or passive restraint systems
Peds Pearl

- An unrestrained child involved in a front-end crash at 30 miles per hour hits the dashboard with the same force as in a three-story fall.

Child Safety Seats

- An improperly worn restraint:
 - May not protect against injury in the event of a crash
 - May even cause injury

Child Safety Seats

- Predictable injuries that may occur even with proper use of a child safety seat include:
 - Blunt abdominal trauma
 - Change of speed injuries from deceleration forces
 - Neck and spinal injury
Motor Vehicle/Pedestrian Crashes

- Most pedestrian injuries occur during the day, peaking in the after-school period
- Approximately 30% of pedestrian injuries occur while the child is in a marked crosswalk

Motor Vehicle/Pedestrian Crashes

- Pedestrian injuries are the most important cause of traumatic coma in children
 - Frequent cause of serious lower extremity fractures, particularly in the school-aged child
Motor Vehicle/Pedestrian Crashes

- Adults will typically turn away if they are about to be struck by an oncoming vehicle, resulting in lateral or posterior injuries.
- In contrast, a child will usually face an oncoming vehicle, resulting in anterior injuries.

Factors affecting the severity of injury include:
- The speed of the vehicle
- The point of initial impact
- Additional points of impact
- The height and weight of the child
- The surface on which the child lands

Initial impact:
- Because a child is usually shorter, initial impact occurs higher on the body than in an adult.
- Bumper strikes child’s pelvis or legs (above knees)
- Fender strikes abdomen
- Predictable injuries include injuries to the chest, abdomen, pelvis, or femur.
Motor Vehicle/Pedestrian Crashes

Second impact
- Occurs as front of vehicle's hood continues forward and strikes child's thorax
- Child is thrown backward; head and neck flex forward
- Child's head and face may strike front or top of vehicle's hood
- Predictable injuries include facial, abdominopelvic, and thoracic trauma, and head and neck injury

Motor Vehicle/Pedestrian Crashes

Third impact occurs as the child is thrown to the ground
- The child may:
 - Fall under vehicle and be trapped and dragged for some distance
 - Fall to side of vehicle; child's lower limbs run over by a front wheel
 - Fall backward and end up completely under the vehicle

Motor Vehicle/Pedestrian Crashes

Waddell's triad
- The injury pattern experienced by a child involved in a pedestrian injury
 1. Extremity trauma
 2. Thoracic and abdominal trauma
 3. Head trauma
Falls

- Falls are the single most common cause of injury in children

- Factors to consider in a fall are:
 - The height from which the child fell
 - Greater height = greater injury
 - The mass of the child
 - The surface the child landed on
 - Harder surface = greater injury
 - The part of the child’s body that struck first

- Infants
 - Fall from changing tables, high chairs, countertops, and beds

- Preschool children
 - Usually fall from windows

- Older boys
 - Fall from dangerous play areas, such as rooftops and fire escapes
Falls

- Fatalities occur primarily when:
 - A child falls from a height of more than two stories or 22 feet
 - Fall from a roof, window, or balcony
 - The head of a child hits a hard surface (e.g., concrete)

Bicycle Injuries

- Most severe and fatal bicycle injuries involve head trauma

- Associated injuries
 - Facial and extremity trauma
 - Abdominal injuries (from striking the handle bars)
Bicycle Injuries

- Helmet use can reduce the risk of head injury
 - Helmets reduce the risk of head injury by 85% and serious brain injury by 88%

Assessment of the Pediatric Trauma Patient

Pediatric Assessment Triangle

- Evaluate scene safety
- Form your general impression of the patient

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Breathing</th>
<th>Circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental status</td>
<td>Body position</td>
<td>Skin color</td>
</tr>
<tr>
<td>Muscle tone</td>
<td>Visible movement of chest/abdomen</td>
<td></td>
</tr>
<tr>
<td>Body position</td>
<td>Work of breathing (ventilatory rate/effort)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Audible airway sounds</td>
<td></td>
</tr>
</tbody>
</table>
Primary Survey

- Immediately life-threatening injuries that must be identified and managed in the primary survey include the following:
 - Airway obstruction
 - Open pneumothorax
 - Tension pneumothorax
 - Massive hemothorax
 - Flail chest
 - Cardiac tamponade

Primary Survey

Airway and cervical spine protection
- Assume spinal injury:
 - If the child has experienced blunt trauma above the nipple line
 - Has a significant mechanism of injury
 - Complains of neck or back pain
 - Complains of numbness or tingling
 - Experiences loss of movement or weakness
 - Has multiple injuries of any cause

Primary Survey

Cervical spine
- If c-spine injury is suspected:
 - Manually stabilize the head and neck in a neutral in-line position
 - Maintain spinal stabilization if already completed
Primary Survey

- If an attempt to move the head and neck into a neutral in-line position results in any of the following, STOP any movement and stabilize the head in that position:
 - Compromise of the airway or ventilation
 - Neck muscle spasm
 - Increased pain
 - Onset or increase of a neurologic deficit
 * Numbness, tingling, loss of motor ability

- To maintain the c-spine in a neutral position, it is often necessary to place padding under the torso of an infant or young child.

- Padding should be of appropriate thickness so that the child’s shoulders are in horizontal alignment with the ear canal.

Primary Survey

- Open pneumothorax
 - Cover the wound with a sterile occlusive dressing taped on three sides

- Tension pneumothorax
 - Needle decompression
Primary Survey

• Signs particularly helpful in detecting shock:
 ➢ Heart rate
 ➢ Capillary refill
 ➢ Children younger than 6 years
 ➢ Mental status

Primary Survey

• If signs of shock are present:
 ➢ Establish vascular access
 ➢ If decompensated shock:
 ➢ Establish access in two sites using large-bore catheters
 ➢ Give 20 mL/kg of NS or LR

 ➢ Suspect internal bleeding if signs of shock but no evidence of external volume loss

Primary Survey

• Pediatric Glasgow Coma Scale (GCS)
Head Trauma

A child is vulnerable to head injury because:

- The skull of an infant and child is thin and pliable
- Large size and weight of the head
- Underdeveloped cervical ligaments
- Relatively weak neck muscles

Cerebral Perfusion

- Cerebral perfusion pressure is the difference between mean arterial blood pressure (MAP) and ICP
- Maintenance of an adequate blood volume and BP is critical for brain perfusion
 - If BP is reduced, so is cerebral perfusion pressure
Intracranial Pressure

- The brain can compensate for changes in intracranial pressure by manipulating one of three major components of the skull
- A decrease in any one of these will lower ICP:
 - Brain tissue (occupies 78% of the skull)
 - Blood volume (occupies 12%)
 - Cerebrospinal fluid (occupies 10%)

General Categories of Head Injury

- Coup injuries
 - Injury directly below point of impact
- Contrecoup injuries
 - Injury at another site, usually opposite the impact

Diffuse axonal injury (DAI)

- Shearing, tearing, stretching force of nerve fibers with axonal damage

Focal injury

- An identifiable site of injury limited to a particular area or region of the brain
Mild Diffuse Axonal Injury

- Concussion (mild DAI)
 - Transient impairment of consciousness followed by rapid recovery to baseline neurologic activity
 - Most common result of blunt trauma to the head
 - Infrequently associated with structural brain injury
 - Rarely leads to significant long-term sequelae

Moderate Diffuse Axonal Injury

- Shearing, stretching, or tearing results in minute petechial bruising of brain tissue
- Brainstem and reticular activating system may be involved leading to unresponsiveness
- Commonly associated with basilar skull fracture
 - Most survive but neurologic impairment common

Severe Diffuse Axonal Injury

- Severe mechanical disruption of many axons in both cerebral hemispheres and extending to the brainstem
- Assessment
 - Unresponsiveness for prolonged period
 - Posturing common
 - Other signs of increased ICP occur depending on various degrees of damage
Posturing

- Decorticate posturing
 - Legs extended
 - Arms flexed

- Decerebrate posturing
 - All extremities extended and rotated inward

Linear Skull Fracture

- Line crack in the skull

- Most common type of skull fracture
 - Approximately 60% to 90% of skull fractures in children

- Most have an overlying hematoma or soft tissue swelling

Bilateral black eyes are seen in this 12-day-old
Linear Skull Fracture

- This infant's soft palate was shredded by repeated stabs with a sharp object. He presented with a report of spitting up blood and no history of trauma.
- Linear skull fracture found in the same infant.

Depressed Skull Fracture

- Pieces of bone are pushed inward pressing on, and sometimes causing tearing, of brain tissue
- Most commonly seen in parietal area
 - Higher likelihood of intracranial hemorrhage
- Open (compound) or comminuted fracture requires neurosurgical evaluation

Depressed Skull Fracture

- Neurologic signs and symptoms evident
- Cover depressed area with a sterile dressing moistened with sterile saline
- Monitor closely for signs of increased ICP
Basilar Skull Fracture

- Extension of linear fracture to floor of skull
- May not be seen on radiograph/CT
- Often involves temporal bone with bleeding into middle ear
- May cause a dural tear
 - Can lead to CSF leak
 - Exposure to microorganisms of upper airway
- CSF/blood from ear(s) or nose
- Bilateral black eyes—raccoon’s eyes
- Bruising behind ear(s)
 - Battle’s sign
- Hemotympanum
- Hearing loss occurs in up to ½ of patients
- Possible seizures due to irritation of blood on brain tissue
- Most heal spontaneously within 7 to 10 days

Open Skull Fracture

- Severe force involved, brain tissue may be exposed
- Neurologic signs and symptoms evident
Cerebral Contusion

- A focal brain injury in which brain tissue is bruised and damaged in a local area
 - May occur at both the area of direct impact (coup) and/or on side opposite the impact (contrecoup)

- Airway patency and breathing adequacy a priority
- Alteration in level of responsiveness
- Confusion or unusual behavior common
- May complain of progressive headache and/or photophobia
- May be unable to lay down memory; repetitive phrases common
- Assess for signs and symptoms of increased ICP

Epidural Hematoma

- An epidural hematoma is a rapidly accumulating hematoma between the dura and the cranium
- 85% are associated with an overlying skull fracture
 - Most serious lacerate middle meningeal artery
 - Occasionally, may be result of venous bleeding
- Loss of consciousness followed by a lucid, awake interval
Epidural Hematoma

- Hallmark sign
 - Dilated and fixed pupil on same side as the impact

- Other signs and symptoms
 - Headache, vomiting
 - Altered mental status
 - Early dilation of ipsilateral pupil
 - Contralateral hemiparesis

Subdural Hematoma

- Usually results from tearing of the bridging veins between the cerebral cortex and dura
 - Blood fills space between dura and arachnoid

Subdural Hematoma

- Pupillary changes
- Hemiparesis
- Restlessness
- Focal neurologic signs
- Altered mental status
Head Injury—Assessment

- May be impossible to tell which type of hematoma is present
 - More important to recognize the presence of brain injury
- Assess Glasgow Coma Scale score
- History is important
 - What was the child doing? What happened?
 - What is wrong now?
 - What doesn’t seem right?

Signs/Symptoms of Increasing ICP

- Headache that becomes increasingly severe
- Vomiting
- Lethargy
- Confusion
- Changes in consciousness
- Pupil changes
- Pulse slows or becomes irregular
- Respirations become irregular
- Posturing
- Seizures
- Coma

Signs of Brain Irritation

- Change in personality
- Irritability
- Lethargy
- Confusion
- Repeating words or phrases
- Changes in consciousness
- Paralysis of one side of the body
- Seizures
General Management of Head/Brain Injuries

- Suspect cervical spine injury; cervical spine precautions
- Maintain airway and adequate ventilation
 - Hypoxia must be prevented
 - Tracheal intubation often necessary for severely head-injured child
 - Consider RSI and use of lidocaine before procedure to reduce ICP
 - Ensure the availability of suction
 - Consider placement of an orogastric tube

- Elevate head of stretcher or backboard 30 degrees
- Establish vascular access
 - Start IV of isotonic fluid (NS or LR) and titrate to BP
 - Prevent hypotension to preserve CPP
 - If hypotension present, look for internal bleeding
 - Stop external bleeding

- Pharmacologic treatment
 - Possible use of diuretics
 - Paralytics/sedation
 - Avoid glucose unless hypoglycemia confirmed
General Management of Head/Brain Injuries

- Treat seizures if present

- Perform serial neurologic checks
 - Every 15 to 30 minutes until the child is alert
 - Then every 1 to 2 hours for 12 hours
 - Then every 2 to 4 hours thereafter

- Use Glasgow Coma Scale for serial comparisons
 - GCS score that falls two points suggests significant deterioration
 - Urgent patient reassessment is required

Spinal Trauma

- Children can have spinal nerve injury without damage to the vertebrae
 - Spinal Cord Injury Without Radiographic Abnormality (SCIWORA)
Spinal Trauma

- Can have spinal column injury (i.e., bony injury) with or without spinal cord injury
- Can have spinal cord injury with or without spinal column injury

Causes of Spinal Trauma

- Direct trauma
- Excessive movement—acceleration, deceleration, deformation
- Directions of force
 - Flexion or hyperflexion
 - Extension or hyperextension
 - Rotational
 - Lateral bending
 - Vertical compression
 - Distraction

Types of Spinal Cord Injuries

Primary injury
- Occurs at time of impact/injury
- Causes
 - Cord compression
 - Direct cord injury
 - Sharp or unstable bony structures
 - Interruption in the cord’s blood supply
Types of Spinal Cord Injuries

Secondary injury
- Occurs after initial injury
- Causes
 - Swelling
 - Ischemia
 - Movement of bony fragments
- Cord concussion
 - Results from temporary disruption of cord-mediated functions

Complete Cord Transection
- All tracts of spinal cord completely disrupted
- Cord-mediated functions below transection are permanently lost
- Results in:
 - Quadriplegia
 - Injury at the cervical level
 - Loss of all function below injury site
 - Paraplegia
 - Injury at the thoracic or lumbar level
 - Loss of lower trunk only

Incomplete Cord Transection
- Some tracts of the spinal cord remain intact
- Some cord-mediated functions intact
- Potential for recovery
 - Function may only be temporarily lost
- Types
 - Anterior cord syndrome
 - Central cord syndrome
 - Brown-Séquard syndrome
Incomplete Cord Transection

- Anterior cord syndrome
 - Caused by bony fragments or pressure on spinal arteries
 - Symptoms include loss of motor function and pain, temperature, and light touch sensations
 - Some light touch, motion, position, and vibration sensations are spared

- Central cord syndrome
 - Usually occurs with hyperextension of cervical region
 - Symptoms include weakness or paresthesia in upper extremities but normal strength in lower extremities
 - May have varying degrees of bladder dysfunction

- Brown-Séquard syndrome
 - Caused by penetrating injury and involves hemi transection of cord involving only one side of cord
 - Symptoms include complete cord damage and loss of function on affected side with loss of pain and temperature sensation on side opposite the injury
Signs and Symptoms of Spinal Trauma

- Pain to the neck or back
- Pain on movement of the neck or back
- Pain on palpation of posterior neck or midline of back
- Deformity of the spinal column
- Guarding or splinting of the muscles of the neck or back
- Priapism (males)
- Signs and symptoms of neurogenic shock (peripheral vasodilation, bradycardia, and hypotension)
- Paralysis, paresis, numbness, or tingling in the arms or legs at any time after the incident
- Diaphragmatic breathing

Neurogenic Shock

- Occurs secondary to spinal cord injury
- Injury disrupts the body’s sympathetic compensatory mechanism
 - Loss of sympathetic tone to the vessels
 - Arteries and arterioles dilate, enlarging the size of the vascular container and producing a relative hypovolemia
 - Skin will be warm and dry due to cutaneous vasodilation
 - Relative hypotension
 - Relative bradycardia

- Shock presentation is usually the result of hidden volume loss (e.g., chest injuries, abdominal injuries)
- Treatment focus primarily on volume replacement
- Differentiate neurogenic shock (↓ blood pressure, ↓ heart rate) from hypovolemic shock (↓ blood pressure, ↑ heart rate)
General Management of Spinal Injuries

- Use and effectiveness of steroids in spinal cord injury is controversial
- Primary goal is to prevent further injury
- Treat the spine as a long bone with a joint at either end
 - Stabilize the joint above (head) and the joint below (pelvis) the injury

Spinal Stabilization
Helmeted Patients

- Special assessment needs for patients wearing helmets
 - Airway and breathing
 - Fit of helmet and movement within the helmet
 - Ability to gain access to airway and breathing
Indications for Leaving a Helmet in Place

- Good fit with little or no head movement within helmet
- No impending airway or breathing problems
- Removal may cause further injury
- Proper spinal stabilization could be performed with helmet in place
- No interference with ability to assess and reassess airway

Indications for Helmet Removal

- Inability to assess or reassess airway and breathing
- Restriction of adequate management of the airway or breathing
- Improperly fitted helmet with excessive head movement within helmet
- Proper spinal stabilization cannot be performed with helmet in place
- Cardiac arrest

Thoracic Trauma
Thoracic Trauma

- Thoracic trauma associated with a high mortality rate
- Greater elasticity and resilience of the chest wall
 - Rib and sternum fractures less common than in adults
 - But, force is more easily transmitted to the underlying lung tissues

Rib Fractures

- Most frequently caused by blunt trauma
- May be associated with injury to the underlying lung (pulmonary contusion) or the heart (myocardial contusion)
- Seriousness of the injury increases with:
 - Age
 - Number of fractures
 - Location of the fractures

Rib Fractures

- Localized pain at the fracture site
- Pain on inspiration
- Shallow breathing
- Tenderness on palpation
- Deformity of chest wall
- Crepitus
- Swelling and/or bruising at the fracture site
- Possible subcutaneous emphysema
Rib Fractures

- Airway and ventilation
 - Oxygen therapy
 - Positive pressure ventilation if needed
 - Encourage coughing and deep breathing
- Pharmacological—analgesics
- Non-pharmacological
 - Splint, but avoid circumferential splinting
 - Do not apply tape or straps to ribs or chest wall

Flail Chest

- Results when two or more adjacent ribs are fractured at two points, allowing a freely moving segment of the chest wall to move in paradoxic motion
- Life-threatening injury
- Most commonly occurs because of a vehicle crash
- May also occur because of:
 - Falls from a height
 - Assault
 - Birth trauma
- Uncommon in children

Flail Chest

- Most commonly occurs because of:
 - Falls from a height
 - Assault
 - Birth trauma
- Uncommon in children
Flail Chest

- Chest wall contusion
- Respiratory distress
- Paradoxical chest wall movement
- Pleuritic chest pain
- Crepitus
- Pain and splinting of affected side
- Tachypnea
- Tachycardia

Flail Chest

- Supplemental oxygen
- Positive pressure ventilation may be needed
- Evaluate the need for tracheal intubation
- Positive end expiratory pressure (PEEP)
- Pharmacologic—analgesics
- Non-pharmacologic
 - Positioning
 - Tracheal intubation
 - Positive pressure ventilation
Pulmonary Contusion

- One of the most common chest injuries in children
- Potentially life-threatening injury
- Frequently missed due to presence of other associated injuries

Pulmonary Contusion

- Pathophysiology
 - Alveoli fill with blood and fluid because of bruising of the lung tissue
 - Area of lung available for gas exchange is decreased
 - Severity of signs and symptoms depends on amount of lung tissue injured

Pulmonary Contusion

- Evidence of blunt chest trauma
- Apprehension
- Anxiety
- Tachypnea
- Tachycardia
- Cough
- Hemoptysis
- Dyspnea
- Wheezes, crackles
- Decreased breath sounds
- SC emphysema may or may not be present
- ABG changes precede clinical symptoms
 - Increased PaCO₂
 - Decreased PaO₂
Pulmonary Contusion

- Mild contusion
 - Observation and supportive care

- More severe contusion
 - Tracheal intubation
 - Mechanical ventilation with positive end-expiratory pressure (PEEP)

- Maintain normal blood volume

Simple Pneumothorax

- May occur as a result of blunt or penetrating chest trauma
 - Rib fractures
 - Central line placement

- If child is sitting or standing, air will accumulate in apices
 - Check there first for diminished breath sounds

- If child is supine, air will accumulate in anterior chest
Simple Pneumothorax

- Tachypnea
- Tachycardia
- Respiratory distress
- Absent or decreased breath sounds on affected side
- Decreased chest wall movement
- Dyspnea
- Slight pleuritic chest pain

Simple Pneumothorax

- Small pneumothorax may not require treatment other than observation
- Positive pressure ventilation if necessary
- Monitor for development of tension pneumothorax

Open Pneumothorax

- Open defect in chest wall
 - Allows communication between pleural space and atmosphere
 - Prevents development of negative intrapleural pressure
 - Collapse of ipsilateral lung
 - Inability to ventilate affected lung
 - Ventilation/perfusion mismatch
Open Pneumothorax

- Severity depends on size of wound
 - If chest wound diameter is more than 2/3 diameter of patient's trachea, air will enter chest wound rather than through trachea with each breath
 - Sucking/gurgling sound

- If chest wall flap closes during expiration, air will become trapped inside pleural space
 - Possible tension pneumothorax
 - Direct lung injury may be present

Open Pneumothorax

- Defect in chest wall
- Penetrating injury to chest that does not seal itself
- Sucking sound on inhalation
- Tachycardia
- Tachypnea
- Respiratory distress
- Subcutaneous emphysema
- Decreased breath sounds on affected side
Open Pneumothorax

- Positive pressure ventilation if necessary
- Monitor for development of tension pneumothorax
- Promptly close chest wall defect with occlusive dressing
 - Tape dressing on three sides
- Tube thoracostomy
 - In-hospital management

Tension Pneumothorax

- Common in children
- Life-threatening chest injury
- Can occur because of:
 - Blunt or penetrating trauma
 - Complication of treatment of an open pneumothorax

Tension Pneumothorax

- May result from:
 - An opening through the chest wall and parietal pleura (open pneumothorax)
 - A tear in the lung tissue and visceral pleura (closed pneumothorax)
Tension Pneumothorax

- Air enters pleura during inspiration
 - Progressively accumulates under pressure
- Flap of injured lung acts as one-way valve
 - Air enters pleural space during inspiration
 - Trapped during expiration
- Injured lung collapses
- Pressure rises
- Trachea, heart, and major vessels pushed toward opposite side

Tension Pneumothorax

- Cool, clammy skin
- Increased pulse rate
- Cyanosis (late sign)
- JVD
 - May not be prominent if hypovolemia present
- Hypotension
- Severe respiratory distress
- Agitation, restlessness, anxiety
- Bulging of intercostal muscles on affected side
- Decreased or absent breath sounds on affected side
- Tracheal deviation toward unaffected side (late sign)
- Possible SubQ emphysema in face, neck, or chest wall

Tension Pneumothorax

- Positive pressure ventilation if necessary
- Relieve tension pneumothorax to improve cardiac output
 - If patient has an open chest wound with signs of a tension pneumothorax:
 - Remove dressing over wound for a few seconds
 - Reseal wound with occlusive dressing once pressure released
 - If this does not relieve signs of tension pneumothorax, needle decompression
 - Tube thoracostomy
 - In-hospital management
Hemothorax

- Life-threatening injury
- Frequently requires urgent chest tube and/or surgery
- Requires a minimum of 10 mL/kg of blood to be visualized on chest radiograph

Hemothorax

- Occurs as a result of blunt or penetrating trauma
- Blood accumulates in pleural space and compresses lung
- Massive hemothorax indicates great vessel or cardiac injury
 - Rare in children
 - Produces both respiratory failure and circulatory collapse

Hemothorax

- Tachypnea
- Tachycardia
- Respiratory distress
- Hypotension
- Narrowed pulse pressure
- Flat neck veins
- Pleuritic chest pain
- Pale, cool, moist skin
- Dyspnea
- Decreased breath sounds on affected side with or without obvious respiratory distress
- Dullness to percussion on affected side
Hemothorax

- Tracheal intubation if necessary
- Treat hypovolemia and shock with IV fluids
 - Blood administration as indicated
- Tube thoracostomy
 - In-hospital management
 - Ensure IV fluid resuscitation is initiated before procedure

Traumatic Asphyxia

- Sudden compression force to the chest or upper abdomen
 - Lungs full of air and glottis closed
 - Causes sudden increase in intrapleural and intra-abdominal pressure
 - Blood in veins of thorax and neck forced into chest, lungs, neck, head, and brain

Traumatic Asphyxia

- Increased venous pressure causes capillary rupture
- Results in:
 - Violet color of skin in head and neck area
 - Bilateral subconjunctival hemorrhages
 - Facial edema
Traumatic Asphyxia

- Cyanosis of the face and upper neck
- JVD
- Swelling or hemorrhage of the conjunctiva
- Skin below area remains pink
- Tachypnea
- Disorientation
- Hemoptysis
- Epistaxis
- Signs of respiratory insufficiency

Traumatic Asphyxia

- Manage associated injuries (e.g., pulmonary contusion)
- Supportive care

Pericardial Tamponade

- Rapid accumulation of fluid in pericardial sac
 - Compresses heart
 - Decreases cardiac output due to restricted diastolic expansion and filling
 - Hampers venous return
Pericardial Tamponade

- Tachycardia
- Respiratory distress
- Pulsus paradoxus
- Beck’s triad
 - Narrowing pulse pressure
 - Neck vein distention
 - Muffled heart tones
- Cyanosis of head, neck, upper extremities
- Dysrhythmias
 - Bradycardia
 - Pulseless electrical activity
 - Asystole
- Cyanosis of head, neck, upper extremities
- Dysrhythmias
 - Bradycardia
 - Pulseless electrical activity
 - Asystole

Beck’s triad is not often evident in the pediatric patient.

- If profound hypovolemia is present, JVD will be absent.
- If bradycardia occurs, the patient is about to arrest.

Airway and ventilation

IV fluid challenge
 - May transiently increase cardiac output by increasing filling pressure of the heart

Pericardiocentesis
 - In-hospital management
 - Prepare for possible Emergency Department thoracotomy, operative intervention
Commotio cordis

- Disorder described in the pediatric population
- Results from sudden impact to the anterior chest wall (e.g., baseball injury) that causes cessation of normal cardiac function

Abdominal and Pelvic Trauma

Abdominal Trauma

- Third leading cause of traumatic death, after head and thoracic injuries
- Most common cause of unrecognized fatal injury in children
Abdominal Trauma

- Abdominal wall is thin
 - Organs are closer to surface of abdomen
- Proportionally larger solid organs, less subcutaneous fat and less protective abdominal musculature than adult
- Liver and spleen of small child lower in abdomen
 - Less protected by the rib cage

Blunt Abdominal Trauma

- Blunt mechanisms (85% of cases)
- In children, primarily caused by:
 - Motor vehicle collisions
 - Causes >50% of abdominal injuries in children
 - Most lethal cause of abdominal injury in children
 - Motorcycle collisions
 - Falls
 - Sports-related injuries
 - Pedestrian crashes
 - Child abuse

Abdominal Trauma

- Effects of bicycle injuries may not be seen on initial presentation
 - Mean elapsed time to onset of symptoms is nearly 24 hours
Penetrating Abdominal Trauma

- Penetrating mechanisms (15% of cases)
 - Energy imparted to the body
 - Low velocity
 - Knife, ice pick, scissors
 - Medium velocity
 - Gunshot wounds
 - Shotgun wounds
 - High velocity
 - High power hunting rifles
 - Military weapons

Splenic Injuries

- Most frequently injured abdominal organ during blunt trauma
 - Motor vehicle collisions
 - Sudden deceleration injuries
 - Contact sports-related injuries

- May present with LUQ abdominal pain radiating to left shoulder
 - Kehr’s sign
 - Result of diaphragm irritation

Splenic Injuries

- Patient presentation may range from stable to persistent hypotension to cardiovascular collapse
 - Stable patients
 - CT scan or bedside ultrasound

- Bleeding from a minor splenic injury often stops spontaneously
 - However, spontaneous splenic rupture 3 to 5 days after the injury has been described
Liver Injuries

- Liver vulnerable to injury
 - Large size
 - Fragile
- Second most commonly injured solid organ in the pediatric patient with blunt abdominal trauma
 - Most common cause of lethal hemorrhage

Liver Injuries

- Injuries may be the result of blunt or penetrating trauma
 - Firm blow to RUQ or right-sided rib fractures may cause liver injury
- Absence of localized bruises or abrasions does not rule out possibility of serious laceration or rupture

Kidney Injuries

- Children are more susceptible to renal injuries because:
 - Kidneys are large in proportion to abdomen
 - Lower ribs do not shield kidneys from injury
 - Underdevelopment of abdominal wall muscles and a lack of extensive perirenal fat provides less protection for kidneys
 - Their kidneys are mobile
Kidney Injuries
- Usually caused by blunt trauma
 - Deceleration forces
- Rarely caused by penetrating trauma
- Often present with hematuria, back pain
- Most injuries are minor and can be managed without surgical intervention

Pancreatic Injuries
- Contusion most common type of injury to pancreas
- Common mechanisms of injury:
 - Falling from a bicycle with injury caused by handlebars
 - Pedestrian traffic collisions
 - Motor vehicle collisions
 - Child abuse

Pancreatic Injuries
- Lacerations cause hemorrhage and release of enzymatic contents toxic to surrounding tissues
- Penetrating trauma requires surgical evaluation
Hollow Organ Injuries

- Small and large intestines
 - Most often injured as a result of penetrating injuries
 - Can occur with deceleration injuries

- Stomach
 - Most often injured as a result of blunt trauma
 - Full stomach before incident increases risk of injury

Hollow Organ Injuries

- Duodenum
 - Most often injured as a result of blunt trauma
 - Recognition often delayed

Hollow Organ Injuries

- Bladder
 - Most often injured as a result of blunt trauma due to automobile or auto-pedestrian collisions
 - Full bladder before incident or inappropriate use of lapbelts may increase risk of bladder injury
 - Penetrating injuries may be caused by guns, knives, or fractured pelvic bones
Chance Fracture
- Also called a seatbelt fracture
- Horizontal fracture of thoracic or lumbar spine caused by a hyperflexion injury with little or no compression of vertebral body
- Typically occurs when a lap belt is worn with no shoulder harness during a motor vehicle collision

Correct (left image) and incorrect (right image) positions for lap belts on children.

Evisceration
- Do not touch or try to replace the exposed organ
- Carefully remove clothing from around the wound
- Cover exposed organs and wound
 - Apply a large sterile dressing, moistened with sterile water or saline, over organs and wound
 - Secure dressing in place with a large bandage

Pelvic Fractures
- Fractures of the pelvis in children are uncommon
 - Associated soft tissue injuries may be severe
- Many pelvic fractures occur in children struck by moving vehicles
Pelvic Fractures

- Treatment of a pelvic fracture depends on type of fracture
- Follow local protocol

Extremity Trauma

- Fractures are among the most frequently missed injuries in children with multiple trauma
Extremity Trauma

- Be alert for evidence of possible child abuse:
 - Fractures of differing ages
 - Discrepancy between history and injury
 - Prolonged and/or unexplained delay in treatment
 - Different stories at different times
 - Poor health and hygiene

Extremity Stabilization

- Stabilize joint above and below the fracture site
- Assess and document pulses, motor function, and sensation in the affected extremity before and after stabilization

Amputated Part

- Apply a sterile dressing soaked in NS to stump, then splint it
 - If profuse bleeding is present, apply direct pressure with a soft dressing
 - Immobilize limb to prevent further injury
- Gently rinse dirt and debris from amputated part with NS or LR solution
 - Do not scrub
 - Clean water is an acceptable alternative if sterile isotonic solution is not available
Amputated Part

- Put the part in a plastic bag or waterproof container
- Place the plastic bag or waterproof container in water with a few cubes of ice
- Transport the amputated part with the patient

Amputated Part

- Do not use dry ice
- Do not allow the part to freeze
 - Freezing renders tissues non-replantable
- Do not place amputated part directly on ice or in water
- Do not complete partial amputations

Thermal Burns
Depth Classification of a Burn Injury

- It is often days before depth can be determined accurately

Thermal Burns

- Superficial burn (first-degree)
 - Example: sunburn
 - Only epidermis involved
 - Dry, no blisters
 - Minimal or no edema
 - Painful and erythematous
 - Heal in 2 to 5 days with no scarring

Thermal Burns

- Partial-thickness burn (second-degree)
 - Often caused by scalds
 - Epidermis and dermis involved, but dermal appendages spared
 - Superficial second-degree burns are blistered and painful
 - Deep second-degree burns may be white and painless
Superficial Partial-Thickness
Second-Degree Burn

Thermal Burns
Partial-thickness burn (second-degree)

- Healing
 - Superficial: 5 to 21 days with no grafting
 - Deep partial: 21 to 35 days with no infection
 - If infected, converts to full thickness

Full-thickness burn (third-degree)
- Typically result from flame or contact injuries
- Epidermis and dermis involved; may include fat, subcutaneous tissue, fascia, muscle, and bone
- Color may vary from yellow or pallid to black and charred, with a dry, waxy, or leathery appearance
- Often insensate to pinprick because nerve endings have been destroyed
- Large areas require grafting
- Small areas may heal from the edges after weeks
Rule of Nines

- Adult body is divided into anatomic regions that have surface area percentages that are multiples of 9%
- Less accurate for children who tend to have proportionally larger heads and smaller legs
 - Pediatric version developed
- Calculations with the rule of nines tend to overestimate burn size

Rule of Palms

- May be used to estimate burns encompassing 5% total BSA or less
- The surface area of the patient's palm is estimated to be 1% of the patient's total BSA
Lund and Browder Chart

- Adult and pediatric versions are widely used in burn care

Thermal Burns—Initial Treatment Guidelines

- Remove all clothing and jewelry
- Assess for associated injuries or shock
 - Assess posterior surface of patient for burn injury
- Keep burned extremities elevated above level of heart
- Keep the burned patient warm
- Monitor vital signs at least every 15 to 30 minutes

Thermal Burns—Initial Treatment Guidelines

- Establish vascular access with LR solution

- Two commonly used burn resuscitation formulas:
 1. Parkland burn formula
 - 4 mL/kg divided by the percentage of total BSA burned
 2. Consensus formula
 - 2 to 4 mL/kg divided by the percentage of total BSA burned
Thermal Burns—Initial Treatment Guidelines

- Urinary catheter insertion for fluid resuscitation or as indicated
- Keep patient NPO
- Insert nasogastric tube for all air transports, burns affecting more than 20% total BSA, or those who are intoxicated, intubated, or as indicated
- Give IM tetanus toxoid if patient has not been immunized in preceding 5 years

Thermal Burns—Initial Treatment Guidelines

- Pain management
 - IV analgesia is often necessary to treat pain
 - Consider narcotic therapy for pain management
 - Give pain medication IV in small increments, titrated to level of comfort
- Provide emotional support to patient and family

Questions?