Chapter 33
Hematologic Disorders

Learning Objectives

- Identify the anatomy of the hematopoietic system
- Describe the components of blood and volume, volume control in relation to the hematopoietic system
- Identify and describe blood-forming organs and how/where blood is formed

Learning Objectives (Cont'd)

- Describe normal red blood cell production, function, lifespan, and destruction
- Explain the significance of hematocrit in regard to red blood cell size and number
- Explain correlations of red blood cell count, hematocrit, and hemoglobin values
Learning Objectives (Cont’d)

- Describe normal white blood cell production, function, and destruction
- Identify characteristics of the inflammatory process
- Identify alterations in immunological response

Learning Objectives (Cont’d)

- Describe the number, normal function, types, and lifespan of leukocytes
- Identify differences between cellular and humoral immunity
- Describe platelets in regard to normal function, lifespan, and numbers

Learning Objectives (Cont’d)

- Describe components of the hemostatic mechanism
- Describe the function of coagulation factors, platelets, and blood vessels necessary for normal coagulation
- Describe intrinsic and extrinsic clotting systems and identification of factor deficiencies in each stage
Learning Objectives (Cont'd)

- Define fibrinolysis
- Describe disseminated intravascular coagulation and its precipitating factors
- Identify blood groups
- Define anemia

Learning Objectives (Cont'd)

- Describe the pathology, clinical manifestations, and prognosis associated with:
 - Aplastic anemia
 - Hemoglobinopathy (including sickle cell disease)
 - Hemolytic anemia
 - Iron-deficiency anemia
 - Methemoglobinemia

Learning Objectives (Cont'd)

- Describe the pathology and clinical manifestations associated with disorders of hemostasis: platelet dysfunction, thrombocytopenia, decreased production, platelet destruction, sequestration, and hemophilia
- Describe the pathology and clinical manifestations associated with leukocyte disorders: leukemia, lymphoma, and multiple myeloma
Learning Objectives (Cont’d)

- Identify the components of physical assessment in relation to the hematological system; integrate pathophysiological principles into the assessment of hematological disease

Introduction

- Hematology
 - Study of blood, parts, and functions
- Blood
 - Carries nourishment, oxygen, waste products
 - Regulates temperature, balances fluid and electrolytes, regulates pH, prevents fluid loss, prevents disease
 - Maintains homeostasis

Anatomy and Physiology of the Hematopoietic System

- Functions and characteristics of blood
 - Connective tissue
 - Cells, cell fragments suspended in plasma
 - Supply oxygen, nutrients to cells
 - Transport carbon dioxide, nitrogenous wastes from tissues to lungs, kidneys
 - Carry hormones from endocrine glands to target tissues
Anatomy and Physiology of the Hematopoietic System (Cont’d)

- Functions and characteristics of blood
 - Regulate body temperature
 - Regulate pH through buffering components
 - Keep fluid, electrolytes balanced through salt, plasma proteins
 - Regulate the immune system through white blood cells, antibodies
 - Form clots through platelets

- Blood composition
 - 55% plasma
 - 45% formed cellular fragments
 - Hematocrit
 - Plasma
 - Formed elements

- Hematopoietic stem and progenitor cells
 - Formation of blood/blood cells in body
 - Starts with stem cell, matures into RBCs, WBCs, platelets
 - Originates in bone marrow
 - Have the ability to renew
 - As more differentiated, lose ability to self-renew
Anatomy and Physiology of the Hematopoietic System (Cont’d)

- Red blood cells
 - Normal erythropoiesis
 - tissues need oxygen for aerobic metabolism
 - Production
 - Major components, including RBC structure, function, turnover
 - Bone marrow capacity to produce new RBCs
 - Growth factor regulation

Anatomy and Physiology of the Hematopoietic System (Cont’d)

Development of Cells of the Hematological System

- Red blood cell structure
 - Allows maximal flexibility as it travels through microvasculature
 - Mature cell, biconcave disc
 - Lacks nucleus, mitochondria
 - Hemoglobin
 - 100-200 day lifespan
Anatomy and Physiology of the Hematopoietic System (Cont’d)

- Clinical and laboratory measures
 - Hematocrit
 - Volume of packed red cells/packed cell volume
 - Measures volume of whole blood composed of RBCs
 - Spun in centrifuge, measure red cell column height, compare to total height of whole blood column
 - Portion of total blood volume occupied by red cell mass
 - Depends mostly on RNCs number
 - 42-52% males, 36-48% females
 - Three times hemoglobin value
 - May be affected by altitude, patient position, heavy smoking

- RBC count
 - Number of RBCs/microliter
 - Estimate of hemoglobin content of blood

- Hemoglobin
 - Molecule of RBC carries oxygen
 - Blood capacity
 - Total blood hemoglobin depends on RBC number
White blood cells

- Normal myelopoiesis
 - Produce differentiated cells, provide body's host defense
 - Myeloid cell production, share common precursor cell
 - With acute infection, WBCs release colony-stimulating factor, prompts marrow to increase WBC production
 - Leukocytosis
 - Leukopenia

Types
- Neutrophils
- Eosinophils
- Basophils
- Lymphocytes
Anatomy and Physiology of the Hematopoietic System (Cont’d)

● Platelets
 ➢ Formation of clots, coagulation
 ➢ Platelet, vessel wall, von Willebrand factor, fibrinogen must work together for adhering, aggregation, clot formation
 ➢ Function
 ➢ Normal count: 150-400 million/mL of blood
 ➢ Factors influencing platelet count include exercise, racial origin
 ➢ 10 day lifespan

Anatomy and Physiology of the Hematopoietic System (Cont’d)

● Platelets
 ➢ Normal hemostasis
 • Bleeding cessation after endothelial cell injury
 • Blood vessels lined with vascular endothelium
 • Vascular endothelium disruption activates coagulation cascade
 • Achieved through vascular constriction, platelet plug formation, coagulation activation, clot formation
 • von Willebrand factor needed for adhesion

Anatomy and Physiology of the Hematopoietic System (Cont’d)

● Platelets
 ➢ Normal hemostasis
 • Coagulation cascade
 • Fibrin clot formation
 • Fibrinolysis
Blood typing and transfusions: ABO and Rh blood groups

Agglutinogens

• Specific blood type antigens found on RBC surface
• Different blood types, antigens on RBCs
• ABO blood types
• Rh blood groups
Anatomy and Physiology of the Hematopoietic System (Cont'd)

Agglutination reactions

Blood typing and transfusions: ABO and Rh blood groups
- Transfusions
 - Both ABO, Rh must match
 - AB-positive, universal recipient
 - O-negative, universal donor

Red Blood Cell Disorders
- Aplastic anemia
 - Decreased production of 1+ major hematopoietic lineages within bone marrow
 - Marrow failure, differentiation of pluripotent stem cells
 - Classic marrow failure disorder
Red Blood Cell Disorders (Cont'd)

- Aplastic anemia
 - Inherited in autosomal recessive pattern
 - Growth retardation, congenital skeleton defects
 - Heterogeneous phenotypic presentation
 - Physical deformities, hematological abnormalities
 - Acute manifestations

Red Blood Cell Disorders (Cont'd)

- Hemoglobinopathy
 - Single amino acid substitution in one globin chain
 - Sickle cell
 - Physical findings
 - Recurrent pain, chronic complications
 - Anemic
 - Vasoocclusion
 - Growth retardation, psychosocial problems, susceptibility to infection
Red Blood Cell Disorders (Cont'd)

- Hemolytic anemia
 - Premature RBC destruction
 - Hereditary, acquired glucose-6-phosphate dehydrogenase (G6PD) deficiency
 - Increased fatigue, decreased exercise tolerance
 - Congestive heart failure
 - Iron-deficiency anemia

Red Blood Cell Disorders (Cont'd)

- Methemoglobinemia
 - Oxidation of iron in hemoglobin from ferrous to ferric state
 - Causes
 - Suspect with unexplained cyanosis, with normal PaO₂

Disorders of Hemostasis (Cont'd)

- Thrombocytopenia
 - Platelet count <150,000/mm³
 - Decreased platelet production, increased destruction, sequestration
 - Causes
Disorders of Hemostasis (Cont’d)

- Hemophilia
 - Delayed clotting, difficulty controlling hemorrhage
 - Factor VIII/IX reduced, genetic mutations of portion of the X chromosome
 - One in 1000 births
 - Hemophilia A
 - Hemophilia B

Disorders of Hemostasis (Cont’d)

- Disseminated intravascular coagulation
 - Coagulation cascade triggered abnormally
 - Systemic thrombohemorrhagic disorder
 - Intravascular fibrin production, procoagulants and platelet consumption
 - Tissue damage leads to blood clots
 - Excessive clotting

White Blood Cell Disorders

- Acute leukemia
 - Immature hematopoietic progenitor cells, rapidly multiply, displace normal elements within marrow, peripheral blood
 - Fatal if untreated
 - Spontaneous cell turnover
 - Life-threatening elevations of uric acid, potassium, phosphate in tumor lysis syndrome
White Blood Cell Disorders (Cont'd)

- **Hodgkin’s lymphoma**
 - Reed-Sternberg cell
 - Peaks in second and third decades of life, again in sixth and seventh decades
 - Fever, night sweats, weight loss, pruritis
 - Lymph node histology
 - Bone marrow transplantation

White Blood Cell Disorders (Cont'd)

- **Non-Hodgkin’s lymphoma**
 - Derived from B cells
 - Adenopathy, abdominal mass
 - Classified through morphology, immunophenotype, genetic features, clinical characteristics
 - Indolent lymphomas
 - Chemotherapy can cure
 - Lymphoblastic lymphoma, B cell-derived
 - Burkitt’s lymphoma

White Blood Cell Disorders (Cont'd)

- **Multiple myeloma**
 - Plasma-cell dyscrasia
 - Lose ability to respond to signals from immune cells
 - Divide, form abnormal proteins, damage to bone, bone marrow, other organs
 - Rapid, repeated plasma cell production interferes with normal blood cell production
 - Plasma cells cause lytic lesions in skeleton/soft tissue masses
Prehospital Management

- History and physical examination
 - ABCs
 - Assess primary complaint
 - Inquire about pertinent systems review
 - Past medical history
 - Medication
 - Illicit drug use
 - Allergies
 - Family history

Prehospital Management (Cont’d)

- Management
 - Stabilize hemodynamics
 - Secure airway, breathing
 - Bag-mask
 - Supplemental high-flow O₂
 - Endotracheal intubation
 - Shock, suspected blood loss, large-bore IV lines
 - Administer pain medication
 - Rapid transport

Prehospital Management (Cont’d)

- Epidemiology
 - Hypoxia, infection, anemia
Prehospital Management (Cont’d)

- Therapeutic interventions
 - ABCs
 - IV
 - Basic, immediately reversible causes of altered mental status
 - Bleeding, standard measures, direct pressure, elevation
 - Sickle cell, analgesics, isotonic IV

Prehospital Management (Cont’d)

- Patient and family education
 - Reassurance, comfort
 - Avoid head trauma, intracranial hemorrhage

Chapter Summary

- Blood is connective tissue; it consists of cells and cell fragments and comprises approximately 8% of total body weight (5 to 6 L)
- Blood composed of 55% plasma and 45% formed cellular fragments
- RBCs developed through a carefully regulated process known as erythropoiesis
Chapter Summary (Cont’d)

- WBCs are the body’s normal host defense; they include neutrophils, eosinophils, basophils, monocytes, and macrophages
- Platelet function requires cohesion among platelet, vessel wall, von Willebrand factor, and fibrinogen

Chapter Summary (Cont’d)

- Agglutinogens are specific blood type antigens on the surface of the RBC membrane
 - Antibodies are made of agglutinogens (i.e., antigens).
 - A, B, O, Rh agglutinogens must be matched before transfusion

Chapter Summary (Cont’d)

- Diagnosis of the specific cause of a patient’s hematological symptoms in the field is impossible; most patients with hematological disorders show symptoms of hypoxia, infection, and anemia
- Each clinical disorder can present with acute, life-threatening manifestations; must manage the ABCs and be prepared for aggressive resuscitation
Questions?