Chapter 52

Environmental Conditions

Learning Objectives

- Define environmental emergency
- Describe the incidence, morbidity, and mortality rates associated with environmental emergencies
- Identify risk factors most predisposing to environmental emergencies

Learning Objectives (Cont'd)

- Identify environmental factors that may cause illness and exacerbate preexisting illness
- Identify environmental factors that complicate treatment and transport decisions
- List the principal types of environmental illnesses
Learning Objectives (Cont'd)
• Define homeostasis and relate the concept to environmental influences
• Identify normal, critically high, and critically low body temperatures
• Describe several methods of temperature monitoring

Learning Objectives (Cont'd)
• Identify components of the body's thermoregulatory mechanism
• Describe the general process of thermal regulation, including substances used and wastes generated
• Describe the body's compensatory process for overheating

Learning Objectives (Cont'd)
• Describe the body's compensatory process for excess heat loss
• List common forms of heat and cold disorders
• List common predisposing factors associated with heat and cold disorders
Learning Objectives (Cont'd)

- List common preventive measures associated with heat and cold disorders
- Integrate pathophysiological principles and complicating factors common to environmental emergencies and discuss differentiating features between emergent and urgent presentations
- Define heat illness

Learning Objectives (Cont'd)

- Describe the pathophysiology of heat illness
- Identify signs and symptoms of heat illness
- List predisposing factors for heat illness
- List measures to prevent heat illness

Learning Objectives (Cont'd)

- Discuss symptomatic variations presented in progressive heat disorders
- Relate symptomatic findings to commonly used terms of heat cramps, heat exhaustion, and heat stroke
- Correlate abnormal findings in assessment with their clinical significance with heat illness
Learning Objectives (Cont’d)

- Describe the contribution of dehydration to the development of heat disorders
- Describe the differences between classic and exertional heat stroke
- Define fever and discuss its pathophysiological mechanism

Learning Objectives (Cont’d)

- Identify the fundamental thermoregulatory difference between fever and heat stroke
- Discuss how to differentiate fever and heat stroke
- Discuss the role of fluid therapy in the treatment of heat disorders

Learning Objectives (Cont’d)

- Differentiate various treatments and interventions in the management of heat disorders
- Integrate pathophysiological principles and assessment findings to formulate a field impression; implement a treatment plan for dehydration, heat exhaustion, and heat stroke
- Define hypothermia
Learning Objectives (Cont'd)

- Describe the pathophysiology of hypothermia
- List predisposing factors for hypothermia
- List measures to prevent hypothermia
- Identify differences between mild and severe hypothermia

Learning Objectives (Cont'd)

- Describe the differences between chronic and acute hypothermia
- List the signs and symptoms of hypothermia
- Correlate abnormal findings in assessment with their clinical significance in patients with hypothermia

Learning Objectives (Cont'd)

- Discuss the impact of severe hypothermia on standard basic, advanced life support algorithms, and transport considerations
- Integrate pathophysiological principles and assessment findings to formulate a field impression and to implement a treatment plan for mild or severe hypothermia
Learning Objectives (Cont’d)

- Define frostbite
- Define superficial frostbite (frostnip)
- Differentiate superficial frostbite and deep frostbite
- List the predisposing factors for frostbite

Learning Objectives (Cont’d)

- List measures to prevent frostbite
- Correlate abnormal findings in the assessment with the clinical significance of frostbite
- Differentiate various treatments and interventions in the management of frostbite

Learning Objectives (Cont’d)

- Integrate pathophysiological principles and assessment findings to formulate a field impression and implement a treatment plan for the patient with superficial/deep frostbite
- Define drowning
- Describe the pathophysiology of drowning
Learning Objectives (Cont'd)

- List signs and symptoms of drowning
- Describe the lack of significance of freshwater versus saltwater immersion in relation to drowning
- Discuss the incidence of wet versus dry drownings and differences in their management

Learning Objectives (Cont'd)

- Discuss the complications and the protective role of hypothermia in the context of drowning
- Correlate abnormal findings in assessment with clinical significance in a patient with drowning
- Differentiate various treatments and interventions in the management of drowning

Learning Objectives (Cont'd)

- Integrate pathophysiological principles and assessment findings to formulate a field impression and implement a treatment plan for a drowning patient
- Define self-contained underwater breathing apparatus
- Describe laws of gases and relate them to diving emergencies
Learning Objectives (Cont’d)

• Describe the pathophysiology of diving emergencies
• Define decompression illness
• Identify various forms of decompression illness

Learning Objectives (Cont’d)

• Identify various conditions that may result from pulmonary overpressure accidents
• Differentiate various diving emergencies
• List signs and symptoms of diving emergencies

Learning Objectives (Cont’d)

• Correlate abnormal findings in assessment with clinical significance in diving-related illness
• Describe the function of the Divers Alert Network and how members may aid in the management of diving-related illnesses
• Differentiate various treatments and interventions for the management of diving accidents
Learning Objectives (Cont'd)

- Describe the specific function and benefit of hyperbaric oxygen therapy for the management of diving accidents
- Integrate pathophysiological principles and assessment findings to formulate a field impression and implement a management plan for diving accidents
- Define altitude illness

Learning Objectives (Cont'd)

- Describe the application of gas laws to altitude illness
- Describe the etiology and epidemiology of altitude illness
- List predisposing factors for altitude illness
- List measures to prevent altitude illness

Learning Objectives (Cont'd)

- Define acute mountain sickness
- Define high-altitude pulmonary edema
- Define high-altitude cerebral edema
- Discuss symptomatic variations presented in progressive altitude illnesses
Learning Objectives (Cont'd)

- List the signs and symptoms of altitude illnesses
- Correlate abnormal findings in assessment with their clinical significance in a patient with altitude illness
- Discuss the pharmacology appropriate for the treatment of altitude illnesses

Learning Objectives (Cont'd)

- Differentiate various treatments and interventions for the management of altitude illness
- Integrate pathophysiological principles and assessment findings to formulate a field impression and implement a treatment plan for altitude illness

Learning Objectives (Cont'd)

- Integrate pathophysiological principles of the patient affected by an environmental emergency
- Differentiate environmental emergencies on the basis of assessment findings
- Correlate abnormal findings in assessment with clinical significance in a patient affected by an environmental emergency
Learning Objectives (Cont’d)

- Develop a patient management plan based on a field impression of a patient affected by an environmental emergency
- Describe the etiology, signs and symptoms, and management of a patient struck by lightning
- Describe the etiology, signs and symptoms, and management of patients with envenomations

Introduction

- Environmental extremes cause illness/injury
 - Environmental emergencies
 - Environmental illnesses
 - Must know service areas

Wilderness EMS

- Adapted street EMS training to wilderness environments
- Driven by local needs
- Much longer periods of EMS care delivery
Anatomy and Physiology Review

- Homeostasis
 - State of equilibrium

- Homeotherm
 - Body that strives to stay within 1° of norm

Anatomy and Physiology Review (Cont'd)

- Thermoregulation
 - Thermoreceptors
 - Brain
 - Skin
 - Spinal cord
 - Abdominal viscera
 - Great vessels

- Metabolism
 - Increases to generate heat

Anatomy and Physiology Review (Cont'd)

- External mechanisms of heat and cold response
 - Radiation
 - Exchange heat with surroundings
 - Convection
 - Air movement moves heat being radiated
 - Conduction
 - Direct contact with an object
 - Evaporation
 - Heat transfer mechanisms in tandem
Anatomy and Physiology Review (Cont'd)

- External mechanisms of heat and cold response
 - Involuntary responses
 - Perspiration
 - Blood vessels
 - Metabolism
 - Piloerection
 - Voluntary responses
 - Seek shelter from cold or heat
 - Add or remove insulation
 - Outside contributors
 - Wind velocity
 - Humidity

- Predisposing factors
 - Age
 - Health
 - Medical history
 - Shock
 - CNS insult
 - Burns
 - Medications
 - Skin conditions
 - Mental history
Anatomy and Physiology Review (Cont'd)

- Measures to prevent heat and cold injury
 - Cold
 - Avoid long periods of exposure
 - Cover exposed body surfaces
 - Layer clothing
 - Keep clothing and body dry
 - Heat
 - Avoid long periods of exposure
 - Drink plenty of clear fluids
 - Use shade to reduce heat
 - Avoid using diuretics
 - Avoid using amphetamines
 - Limit alcohol intake

Heat Emergencies

- Heat cramps
 - Muscle spasms
 - Poor fluid level
 - Overexertion with fatigue
 - Sodium and electrolyte loss
 - Extended exertion in heat
Heat Emergencies (Cont’d)

- Heat cramps
 - Physical findings
 - Cramps in fingers
 - Arms
 - Legs
 - Abdomen

- Differential diagnosis
 - Tetany
 - Other heat emergency
 - Simple muscle cramps

- Therapeutic interventions
 - Remove from heat
 - Oral hydration of electrolytes
 - IV solutions—NaCl or LR

Heat Emergencies (Cont’d)

- Heat exhaustion
 - Dehydration and compensated hypovolemia
 - Sweating
 - Sodium and electrolyte loss
 - Vasodilation with venous pooling
 - Extended exertion in heat
Heat Emergencies (Cont’d)

- Heat exhaustion
 - Physical findings
 - Rapid shallow breathing
 - Weak rapid pulse
 - Flushed or pale skin
 - Cool clammy skin
 - Heavily sweating
 - Normal core temperature that can rise to 100–105°F
 - May present with dehydration

Heat Emergencies (Cont’d)

- Heat exhaustion
 - Differential diagnosis
 - Uncomplicated dehydration
 - Hypoglycemia
 - Infection
 - Intoxication
 - Fatigue

Heat Emergencies (Cont’d)

- Heat exhaustion
 - Therapeutic interventions
 - Similar to heat cramps
 - Remove from heat
 - Supine
 - Oral hydration of fluids/electrolytes
 - IV solutions–NaCl or LR
 - Manage core temperature
Heat Emergencies (Cont’d)

- Heat stroke
 - Increase in core temperature over 105°F with decreased LOC
 - Hypothalamic temperature regulation lost
 - Chain reaction within tissue
 - Cellular death of brain, kidneys, liver
 - Hallmark is altered mental status
 - Metabolic acidosis
 - Hyperkalemia

Heat Emergencies (Cont’d)

- Heat stroke
 - Classic heat stroke
 - Long periods of heat and humidity exposure
 - Affects very young, very old, diabetics, alcoholism and cardiac history
 - Risks from diuretics, psychotropics, anticholinergics
 - Late sign - hot red dry skin

Heat Emergencies (Cont’d)

- Heat stroke
 - Exertional heat stroke
 - Sudden rise in core temperature during exertion
 - All age groups susceptible
 - Patient not fluid deprived
 - Skin may be sweaty
Heat Emergencies (Cont’d)

- Heat stroke
 - Physical findings
 - Altered LOC—disorientation, combative
 - Unconsciousness
 - Hallucinations
 - Seizures
 - Core temperature above 40.6°C or 105°F
 - Ataxia
 - Tachycardia that slows near death
 - Tachypnea progressing to bradypnea
 - Hypotension often lacking diastolic
 - Differential diagnosis
 - CVA
 - Hypoglycemia
 - Infection
 - Uncomplicated dehydration
 - Intoxication
 - Neuroleptic malignant syndrome

- Therapeutic interventions
 - Goal—cooling core temperature
 - Goal—replenish fluid
 - Airway management
 - Cardiac monitoring
Heat Emergencies (Cont’d)

• Hypothermia
 ➢ Core temperature <35°C (95°F)
 ➢ Exposure to cold
 ➢ Lack of heat production

Heat Emergencies (Cont’d)

• Hypothermia
 ➢ Primary
 • Accidental, homicidal, suicidal
 • Formerly “acute”
 ➢ Secondary
 • Complications of sepsis, trauma, carcinoma
 • Formerly “chronic”

Cold Emergencies

• Hypothermia
 ➢ Compensatory mechanisms
 • Piloerection
 • Shivering
 • Increased muscle tone
 • Peripheral vasoconstriction
 • Increased cardiac output
 • Increased respiratory rate
Cold Emergencies (Cont’d)

● Hypothermia
 ➢ Core temperature drops
 • Failure of compensatory mechanisms
 • Metabolic rate drops
 • Cardiac output drops

Cold Emergencies (Cont’d)

● Hypothermia
 ➢ Mild hypothermia 34–36°C (93.3–96.8°F)
 ➢ Moderate hypothermia 30–34°C (86–93.2°F)
 ➢ Severe hypothermia <30°C (86°F)
 ➢ Poikilothermic

Cold Emergencies (Cont’d)

● Hypothermia
 ➢ Predisposing factors
 • Alcoholism
 • Burns
 • Hypothyroidism
 • Extremes in age
Cold Emergencies (Cont’d)

- Hypothermia
 - Physical findings
 - Assess the environment
 - Core temperature via rectal
 - Stunned peripheral sensation may impair patient’s ability to feel injuries

Cold Emergencies (Cont’d)

- Hypothermia
 - Physical findings
 - Mild hypothermia
 - Normal heart rate
 - Adequate BP
 - Pale, dry or wet skin
 - Slurred speech
 - Shivering
 - Uncoordinated movement
 - Impaired judgment
 - Impaired fine motor skills
 - Sluggishness

Cold Emergencies (Cont’d)

- Hypothermia
 - Physical findings
 - Moderate hypothermia
 - Decreased respiratory rate
 - Normal heart rate or bradycardia, atrial fibrillation, PVCs
 - Adequate BP or hypotension (difficult to obtain)
 - Pale, cyanotic, or mottled skin
 - Confusion to decreased responsiveness
 - Stiffening muscles
 - Decreased shivering
 - Stops below 86–89.6°F
 - Ataxia
Cold Emergencies (Cont’d)

- Hypothermia
 - Physical findings
 - Severe hypothermia
 - Decreased cardiac output, metabolic rate, cerebral blood flow
 - Fixed, dilate pupils
 - Compromised airway
 - Slow, shallow, or absent respirations
 - Pulmonary edema may develop
 - Slowed heart rate
 - Possible Osborne waves on ECG
 - Cyanotic or mottled skin

Cold Emergencies (Cont’d)

- Hypothermia
 - Differential diagnosis
 - Intoxication
 - CVA
 - Head injury
 - Hypothyroidism
Cold Emergencies (Cont’d)

- Hypothermia
 - Therapeutic interventions
 - Prevent further heat loss
 - Remove wet clothing
 - Eliminate wind
 - Insulate patient
 - Passive rewarming
 - Appropriate for all types
 - Move to warm environment
 - Apply warm dry clothing
 - Insulate above and below patient with blankets

Cold Emergencies (Cont’d)

- Hypothermia
 - Therapeutic interventions
 - Active external rewarming
 - Active internal rewarming
 - Allow patient to urinate
 - Begin CPR if apneic and pulseless
 - Defibrillation
 - IV medications

Cold Emergencies (Cont’d)

- Frostbite
 - Clinical characteristics
 - Freezing of body tissue
 - Pulls water from cells to extracellular space
 - Ice crystals expand and destroy surrounding cells
 - Frostnip is more superficial and reversible
 - No extracellular freezing
Cold Emergencies (Cont’d)

- Frostbite
 - Superficial frostbite
 - Superficial
 - Epidermis and subcutaneous tissue
 - Surrounding tissue reddened
 - White or yellowish, firm skin in area
 - Generally painful

- Frostbite
 - Deep frostbite
 - May also be hypothermic
 - Epidermis, subcutaneous tissue, may involve muscles, nerves, tendons, bones
 - Skin white, hard and frozen to touch
 - Loss of sensation
 - Unable to move or bend frozen part
 - Significant pain during rewarming
 - May require amputation of part

- Frostbite
 - Epidemiology and demographics
 - Mountaineers, explorers
 - Tobacco abusers
 - Fatigued or malnourished individuals
 - Soldiers

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
Cold Emergencies (Cont’d)

- Frostbite
 - Differential diagnosis
 - Chilblains
 - Pernio
 - Trench foot
 - Cold urticaria
 - Uncomplicated hypothermia
 - Raynaud’s phenomenon
 - Local infection
 - Ischemic injuries
 - Blunt trauma

Cold Emergencies (Cont’d)

- Frostbite
 - Therapeutic interventions
 - Limit further exposure and injury
 - Delay thawing if chance of refreezing exists
 - Minimize movement
 - Do not rub or massage

Cold Emergencies (Cont’d)

- Trench foot
 - Physical findings
 - Similar to those of frostbite
 - Generally above freezing temperatures
 - Injury occurs over days
 - Extremity feels cold and numb
 - Skin appears blanched
Cold Emergencies (Cont’d)

- Trench foot
 - Differential diagnosis
 - Chilblains
 - Pernio
 - Frostbite
 - Frostnip
 - Cold urticaria
 - Raynaud’s phenomenon
 - Local infection
 - Ischemic injuries
 - Blunt trauma

Cold Emergencies (Cont’d)

- Trench foot
 - Therapeutic interventions
 - Dry the area
 - Remove from environment
 - Rewarming area
 - Elevation
 - IV
 - Analgesics if not contraindicated

Submersion Injuries: Drowning and Associated Cautions

- Definition and description
 - Immersion
 - Submersion
 - Drowning
Submersion Injuries: Drowning and Associated Cautions (Cont’d)

- Immersion syndrome
 - Sudden cardiac arrest caused by massive vagal stimulation after sudden exposure to cold water
- Postimmersion syndrome
 - Delayed deterioration of a previous asymptomatic or minimally symptomatic patient

Submersion Injuries: Drowning and Associated Cautions (Cont’d)

- Shallow water blackout
 - Unconsciousness after submersion

Submersion Injuries: Drowning and Associated Cautions (Cont’d)

- Epidemiology and demographics
 - Second leading cause of accidental death in the United States
 - Leading cause of accidental pediatric death
 - Teenagers second major group
 - Elderly third highest group
Submersion Injuries: Drowning and Associated Cautions (Cont’d)

Etiology
- Classic sequence starts with panic
 - Victim can no longer hold breath, reflexively takes a breath, and water enters mouth
 - Victim takes several violent intakes of air and water while flailing
- Water intake hits posterior oropharynx
 - Laryngospasm
 - Bronchospasm
 - Severe hypoxia
 - Acidosis
 - Cardiac disturbances
 - CNS anoxia
 - Coma

Physical findings
- Often accompanied by trauma
- Cardiac disturbances common
- Hypothermia common
Submersion Injuries: Drowning and Associated Cautions (Cont’d)

• Differential diagnosis
 ➢ Trauma
 ➢ Spinal injury
 ➢ Cardiac disturbances
 ➢ Hypothermia
 ➢ Hypoglycemia
 ➢ CNS disturbances
 ➢ Metabolic abnormalities

Submersion Injuries: Drowning and Associated Cautions (Cont’d)

• Therapeutic interventions
 ➢ Priority is reversing hypoxia
 ➢ If any resuscitation is required, patient must be transported

Submersion Injuries: Drowning and Associated Cautions (Cont’d)

• Complications
 ➢ Sudden respiratory arrest
 ➢ ARDS
 ➢ Release of fluid into alveoli
 ➢ Inflammation of alveoli and lung tissue
 ➢ Loss of surfactant
 ➢ Atelectasis
 ➢ Aspiration pneumonia
 ➢ Pneumothorax
Diving Emergencies

- Physics of diving emergencies
 - Water exerts additional pressure against body
 - Fluids are not compressible
 - Gas-filled organs can be compressed and are affected
 - Boyle's law
 - Dalton's law
 - Henry's law

Diving Emergencies (Cont'd)

- Barotrauma
 - Physical damage to body tissue
 - Caused by changes in pressure between inside of body and air/liquid surrounding body
 - High pressure to low pressure
 - Low pressure to high pressure
 - Most common medical complication of diving

Diving Emergencies (Cont'd)

- Barotrauma
 - Physical findings
 - Descending injuries
 - Inability to equalize pressure between nasopharynx and middle ear
 - Middle ear pain
 - Ringing in ears
 - Dizziness
 - Hearing loss
 - Rupture of eardrum
 - Frontal headache
 - Pain behind eyes
Diving Emergencies (Cont'd)

- Barotrauma
 - Physical findings
 - Ascending injuries
 - Obstructions prevent expanding air from escaping, injures surrounding tissue
 - Obstruction can be holding breath, bronchospasm, or mucus plug

- Barotrauma
 - Physical findings
 - Pulmonary overpressurization syndrome
 - Expansion damages lung tissue
 - Arterial gas embolism
 - Pneumomediastinum
 - Pneumothorax

- Barotrauma
 - Differential diagnosis
 - Infection
 - Decompression sickness
 - Trauma
 - Therapeutic interventions
 - High flow O₂
 - IV access
 - Injury-specific treatments
Diving Emergencies (Cont'd)

- Nitrogen narcosis
 - Diving injury that causes stupor and affects cerebral function
 - Nitrogen becomes more soluble at pressure
 - Produces anesthetic and intoxication effect
 - Physical findings
 - Euphoria
 - Poor thinking

Diving Emergencies (Cont'd)

- Nitrogen narcosis
 - Differential diagnosis
 - Intoxication
 - Hypoglycemia
 - CNS infection
 - Therapeutic interventions
 - Ascent to shallower depth
 - Same treatments as other barotrauma

Diving Emergencies (Cont'd)

- Decompression sickness
 - Formation of nitrogen bubbles in bloodstream and tissue
 - Bubbles occur with too rapid ascent
 - Bubbles cause excessive pressure in body areas
 - Presents in joints, tendons, spinal cord, skin, brain, inner ear
 - Occurs in dives deeper than 33′
Diving Emergencies (Cont’d)

• Decompression sickness
 ➢ Physical findings
 • Generally not visible until diving concludes
 • Complaints involving joints and abdomen
 • Fatigue
 • Paresthesias
 • CNS disturbances
 • Onset may be up to 24 hours after dive

Diving Emergencies (Cont’d)

• Decompression sickness
 ➢ Differential diagnosis
 • Fatigue
 • CVA
 • Intoxication
 • Infection
 ➢ Therapeutic interventions
 • Same as other barotraumas
 • Long-term care may involve recompression

Diving Emergencies (Cont'd)

• Decompression sickness
 ➢ Diving injury prevention
 • Do not hold breath while diving
 • Control breathing under water
 • Avoid long dives at depth
 • Get rest between dives
 • Ensure proper hydration
 • Avoid alcohol when diving
 • Make ascents slowly
Altitude-Related Illness

- Similar to diving emergencies
 - Sustained from decreasing pressure
 - Lowering partial pressure of oxygen
 - Unpressurized aircraft flight, mountain travel
 - Most common in elevation >8000 feet

Altitude-Related Illness (Cont’d)

- Acute mountain sickness
 - Most common altitude illness
 - Etiology
 - Hypoxia from reduced O₂ pressure
 - Fluid redistribution
 - Sympathetic activity
 - Hypoventilation
 - Cerebral edema

Altitude-Related Illness (Cont’d)

- Acute mountain sickness
 - Physical findings
 - Mild
 - Headache
 - Light-headedness and dizziness
 - Difficulty sleeping
 - Loss of appetite
 - Breathlessness
 - Fatigue
 - Nausea and vomiting
Altitude-Related Illness (Cont’d)

• Acute mountain sickness
 ➢ Physical findings
 ➢ Severe
 ➢ Severe weakness
 ➢ Severe, protracted vomiting
 ➢ Decreased urine output
 ➢ Resting dyspnea
 ➢ Altered LOC
 ➢ Cough and congestion
 ➢ Inability to walk straight line/ataxia
 ➢ Pale or changing skin color

Altitude-Related Illness (Cont’d)

• Acute mountain sickness
 ➢ Differential diagnosis
 ➢ Viral infection
 ➢ Dehydration
 ➢ Hypoglycemia
 ➢ Metabolic derangements
 ➢ Intoxication or hangover
 ➢ Fatigue
 ➢ Therapeutic interventions
 ➢ If not relieved by rest, descent necessary

Altitude-Related Illness (Cont’d)

• High-altitude pulmonary edema
 ➢ Fluid buildup in lungs caused by altitude
 ➢ Etiology
 ➢ Fluid buildup prevents oxygen and CO₂ exchange
 ➢ Hypertension
 ➢ Hypoxia
 ➢ Hypoperfusion
 ➢ Impaired cerebral function
 ➢ Death
Altitude-Related Illness (Cont’d)

- High-altitude pulmonary edema
 - Physical findings
 - Persistent wet cough, producing white, watery, frothy fluid
 - Crackles for breath sounds
 - Inability to sleep
 - Inability to lay supine without sensation of suffocation
 - Dyspnea
 - Hyperpnea
 - Lethargy
 - Irritability, confusion, disorientation
 - Coma

Altitude-Related Illness (Cont’d)

- High-altitude pulmonary edema
 - Differential diagnosis
 - Pneumonia
 - Infection
 - Fatigue
 - Cardiogenic and noncardiogenic pulmonary edema
 - Hypoxia
 - Hypoglycemia
 - Metabolic disorders

Altitude-Related Illness (Cont’d)

- High-altitude pulmonary edema
 - Therapeutic interventions
 - Primary treatment is descent
 - O₂
 - Specialized nonstandard EMS medications
 - Nifedipine
Altitude-Related Illness (Cont’d)

- High-altitude cerebral edema
 - Most severe altitude injury causing intracranial pressure from swelling
 - Etiology
 - Excessive fluid leakage and swelling of the brain
 - Increased intracranial pressure
 - Occurs after 1-3 days at altitude
 - Most often occurs at >12,000 ft

Altitude-Related Illness (Cont’d)

- High-altitude cerebral edema
 - Physical findings
 - Disorientation
 - Severe headache
 - Ataxia
 - Decreased LOC
 - Drowsiness not relieved by rest
 - Hallucinations
 - Confusion
 - Stupor
 - Coma

Altitude-Related Illness (Cont’d)

- High-altitude cerebral edema
 - Differential diagnosis
 - CVA
 - Hypoglycemia
 - Other metabolic derangements
 - Intoxication
 - Fatigue
 - AMS
Altitude-Related Illness (Cont’d)

- High-altitude cerebral edema
 - Therapeutic interventions
 - Rapid descent is imperative
 - \(\text{O}_2 \)
 - IV access
 - Dexamethasone

Altitude-Related Illness (Cont’d)

- Prevention of high-altitude illnesses
 - Many strategies
 - Generally, slow ascents with rest periods and acclimation

Lightning Injury

- Injuries from transmission of electricity between sky and ground
- Etiology
 - Direct strike
 - Splash injury
 - Contact injury
 - Step voltage injury
 - Blunt injury
 - Streamer injury
Lightning Injury (Cont’d)

- Physical findings
 - Minor injury
 - Tympanic membrane rupture
 - Confusion
 - Amnesia
 - Brief loss of consciousness
 - Temporary deafness
 - Blindness
 - Paresthesia or dysesthesias in extremities
 - Myalgia

- Physical findings
 - Moderate injury
 - Disorientation
 - Combativeness
 - Coma
 - Motor paralysis
 - Absent pulses due to arterial spasm
 - Sympathetic instability
 - Hypotension
 - Vascular trauma
 - Spinal shock
 - Seizures
 - Burns

- Physical findings
 - Severe injury
 - Cardiac arrhythmia
 - Cardiac arrest
 - Pulmonary edema
 - Pulmonary contusion
Lightning Injury (Cont’d)

- Differential diagnosis
 - High-voltage injury
- Therapeutic interventions
 - Pulseless victims are treated first
 - Symptomatic interventions
 - Prevention

Envenomated Animal Bites

- Snakes
 - Clinical characteristics
 - Venoms are complex toxins
 - Many local and systemic effects
 - Generally only lethal in children and the elderly
 - Physical findings
 - Can cause precipitous deterioration in victims
 - Distal neurovascular status may decrease
 - Localized swelling

Envenomated Animal Bites (Cont’d)

- Snakes
 - Differential diagnosis
 - Nonvenomous bites
 - Nonzoological trauma
 - Therapeutic interventions
 - Immobilize injured area at level lower than heart
 - Keep victim calm
 - Transport
 - IV access
 - Prevention
Envenomated Animal Bites (Cont'd)

- Arachnids
 - Clinical characteristics
 - Scorpion venom is paralytic
 - Brown recluse venom causes skin lesions
 - Black widow venom causes sustained muscle spasms, including abdominal rigidity

Envenomated Animal Bites (Cont'd)

- Arachnids
 - Physical findings
 - Scorpion sting—significant local pain
 - Brown recluse bites—serious ulcerated
 - Cutaneous damage
 - Black widow spider—severe muscle spasms

Envenomated Animal Bites (Cont'd)

- Arachnids
 - Differential diagnosis
 - Nonvenomous bites
 - Dermatitis
 - Therapeutic interventions
 - Keep victim calm
 - Scorpion bite
 - Black widow
 - Brown recluse bite
Chapter Summary

- Management of environmental emergencies requires
 - Integration of pathophysiological principles
 - Understanding of the anatomy, physiology, and metabolic mechanisms the body use to maintain homeostasis

Chapter Summary (Cont’d)

- Differentiation between urgent and emergent conditions may be different in remote or austere areas
 - In remote or rugged environments, conditions that are urgent in urban medicine need to be managed emergently because of difficulties in adequately treating and transporting patients in a timely manner

Chapter Summary (Cont’d)

- As with most injuries and illnesses, many preventive measures can be taken in advance
 - Many victims of environmental injuries do not prepare properly, subsequently they suffer dire consequences
Chapter Summary (Cont’d)

- Basic knowledge of the environmental effects on the body is helpful to a paramedic attempting to reverse events that have occurred within the patient.

Questions?