Chapter 57

Ground and Air Transport of Critical Patients

Learning Objectives

- Describe the role that critical care ground transport plays in care of critical patients
- List the responsibilities of agencies in developing staffing needs
- Develop an understanding of who comprises the critical care ground transport team

Learning Objectives (Cont'd)

- List some equipment needed for critical care ground transport
- Describe the advantages and disadvantages of air medical transport
- Identify criteria for working as a member of an air medical flight crew
Learning Objectives (Cont'd)

- Identify conditions and situations for which air medical transport should be considered
- Describe various considerations for preparing for air medical transport

Staffing

- No national standards
 - Recommendations
 - American College of Emergency Physicians
 - U.S. Department of Health and Human Services
 - All have the same concerns

Staffing (Cont’d)

- Critical care staffing agency responsibilities
 - Written policies for staffing, treatment protocols
 - Infection control procedures
 - Continuing education requirements
 - Scheduling with strict safety standards for rest
Staffing (Cont’d)

● Typical staffing may include:
 ➢ Paramedic
 ➢ RN, nurse practitioner
 ➢ Respiratory therapist
 ➢ MD, PA
 ➢ Some may have a critical care paramedic

Equipment

● Ambulance
 ➢ Licensed with applicable state laws
 ➢ Adequate interior lighting
 ➢ Ability for two-way communication with online medical direction
 ➢ Minimal fuel capacity for 175 miles
 ➢ Lights visible from 500 feet from front
 ➢ Siren heard not less than 500 feet away

Equipment (Cont’d)

● Standard equipment
 ➢ Respirators and ventilators
 ➢ Cardiac monitor
 ➢ Pulse oximeter
 ➢ Minimum of three IV infusion pumps or a triple-chamber infusion pump for administering multiple IV medications
 ➢ Intubation equipment and suction units
 ➢ IV poles for inside the unit and portable pole
 ➢ Medication drug box
Equipment (Cont’d)

- Patient compartment large enough to accommodate large equipment
 - Balloon pumps
 - Incubators

History of the Aeromedical Services

- World War I
- Igor Sikorsky invented the first helicopter for the U.S. military
 - Medical uses—Burma 1944
- Late 1960s civilian transports began
Fixed-Wing versus Rotor-Wing Aircraft

- Fixed-wing aircraft
 - Facility to facility
 - Travel farther
 - Travel higher
 - Travel faster

Fixed-Wing v. Rotor-Wing Aircraft (Cont'd)

- Rotor-wing aircraft
 - Scene to facility
 - Sometimes facility to facility
 - Land in smaller space

Flight Crew Criteria

- Nurses
 - First used in the 1930s
 - Usually certified flight registered nurse
 - Often must also be EMT B or P
 - ACLS and PALS
 - Clinical background in emergency or critical care
Flight Crew Criteria (Cont'd)

- Paramedics
 - First used in the 1970s
 - May be a certified flight paramedic
 - Typically 3–5 years clinical experience
- Other members of flight team
 - Added as necessary
 - Physicians
 - Respiratory therapists

Flight Crew Criteria (Cont'd)

- NFPA criteria
 - Basic cardiac life support
 - Advanced cardiac life support
 - Prehospital trauma life support
 - Advanced trauma life support
 - Pediatric advanced life support
 - Neonatal resuscitation program

Transport Physiology

- Gas laws
 - Govern body's physiological changes
 - Variables that affect gases
 - Temperature expressed in degrees Kelvin
 - Pressure
 - Volume
 - Density
Transport Physiology (Cont'd)

- Boyle's law
 - Pressure increases, volume decreases
 - Pressure decreases, volume increases
 - Gas expansion can cause
- Dalton's law
 - As altitude increases pressure decreases
 - More difficult for oxygen to transfer into blood

Transport Physiology (Cont'd)

- Charles' law
 - As temperature increases, so does volume
- Gay-Lussac's law
 - As temperature decreases, pressure decreases

Transport Physiology (Cont'd)

- Henry's law
 - Gas dissolved in liquid is proportional to pressure
 - Rapid ascension can cause nitrogen bubbles in the blood
- Graham's law
 - Gasses move from high to low pressure
Transport Physiology (Cont'd)

- Stress of transport
 - Decreased partial pressure of O₂
 - Hypoxia
 - Hypoxemia
 - Hypercapnia

Transport Physiology (Cont'd)

- Stress of transport
 - Barometric pressure changes
 - Altitude changes create trapped gasses in:
 - GI tract
 - Lungs
 - Ears
 - Sinuses

Transport Physiology (Cont'd)

- Stress of transport
 - Barometric pressure changes
 - Other medical conditions affected:
 - Sinus block, barosinusitis
 - GI tract issues
 - Recent abdominal surgery
 - Colostomy
Transport Physiology (Cont'd)

- Stress of transport
 - Thermal changes
 - Increase in altitude causes decrease in ambient temperature
 - Vibration can pose a risk to regulation of body temperature
 - Monitor temperature throughout
 - Medications: sedatives and analgesics affect temperature
 - Space blanket
 - Decreased humidity
 - As altitude increases, humidity decreases
 - Risk for fluid loss, dehydration
 - Noise
 - Affects crew-to-crew and crew-to-patient communication
 - Leads to fatigue
 - Earplugs for patients pulled before descent

- Stress of transport
 - Vibration
 - Energy transmitted to patient’s body
 - Generates heat
 - Increases metabolic rate
 - Redistribution of blood from peripheral vasoconstriction
 - Fatigue
 - Stressor for crew
 - Stressor for patient
Criteria for Patient Transport

- **Distance**
 - Fixed wing >100 mile distance
 - Rotary wing shorter distance

Criteria for Patient Transport (Cont'd)

- **Medical patients**
 - Critically ill
 - Dissecting/bleeding aortic aneurysm
 - Intracranial bleeding
 - Acute ischemic stroke
 - Epiglottitis
 - Severe hypothermia/hyperthermia
 - Cardiac intervention
 - Sepsis shock
 - Status asthmaticus
 - Status epilepticus
 - Severe poisoning
 - Cardiogenic shock

- **Trauma patients**
 - Criteria for transport
 - Physiological criteria
 - Airway compromise
 - GCS score <13
 - Signs, symptoms of shock (BP <90)
Criteria for Patient Transport (Cont'd)

- Trauma patients
 - Criteria for transport
 - Anatomic criteria
 - Penetrating torso trauma
 - Amputation proximal to wrist/ankle
 - Limb paralysis
 - Spinal cord injury with deficit
 - Burns with > 15% BSA

Criteria for Patient Transport (Cont'd)

- Trauma patients
 - Criteria for transport
 - Mechanism of injury
 - High speed MVC
 - Prolonged extrication (>20 minutes)
 - Fatality in same vehicle
 - Passenger compartment intrusion >12 inches
 - Mechanism with physiological and/or anatomical findings

Criteria for Patient Transport (Cont'd)

- Trauma patients
 - Other considerations
 - Contraindications
 - Absolute cardiac arrest
 - Terminally ill with DNR order
 - Active untreated communicable disease
 - Stable patients
 - Weather conditions—wind speed and visibility
 - Availability of landing zone
 - Arrival time
 - If extrication and ground transport time is less than arrival time
Patient Preparation

- Different for fixed wing
 - Requires ground transport to aircraft
- Hospital to hospital
 - Airway secured
 - IV in place
 - Cardiac monitor in place
 - Medications be used may require evaluation
 - Paperwork, x-rays, diagnostic test results
 - May need to intubate for flight

Landing Site Preparation

- Size
 - Minimum 100 x 100 ft
- Location
 - 100–200 feet downwind
 - Identify by GPS coordinates/major nearby intersection
 - Day: mark corners of zone with cones
 - Night: mark corners of zone with lights, fifth marker on upwind side

Landing Site Preparation (Cont’d)
Landing Site Preparation (Cont’d)

- Obstruction
 - Identify and mark obstructions in immediate area
 - Avoid power lines, poles, and trees
 - 200 feet from bystanders and livestock
- Surface conditions
 - Inform flight crew of landing surface and slope
 - Not >5 degree slope
 - Order of preference: concrete, asphalt, sod/grass, dirt

Landing Site Preparation (Cont’d)

- Communication
 - One person assigned this task
 - Always use clock positions to relate obstacles

Landing Site Preparation (Cont’d)

- General safety
 - Keep spectators at least 200 feet away
 - Ensure personal equipment secured
 - Do not approach until signaled by crew member
 - Never bend over when approaching
 - Do not hold anything above head
Chapter Summary

- Training and the availability of a critical care paramedic allow agencies to provide critical care to grounds units
- Critical care ground transport may be appropriate for a critical care patient who requires transport to another medical facility

Chapter Summary (Cont’d)

- Critical care ground transports are conducted by a multidisciplinary team of healthcare professionals
- Patient compartment of a critical care ground unit should be equipped with all standard equipment found on a mobile intensive care unit
Chapter Summary (Cont’d)

- Beginning of aeromedical services dates back to the 1940s and continues to the present day, with approximately 350,000 rotor-wing and 100,000 fixed-wing transports annually.
- Fixed-wing and rotor-wing aircraft are used to transport ill or injured people to appropriate medical care.

Chapter Summary (Cont’d)

- Fixed-wing aircraft have been used for almost 90 years for medical transport, typically from facility to facility.
- Rotor-wing aircraft and helicopters are better known for scene-to-facility transport.
- Flight crew criteria apply to nurses, paramedics, and other members of the flight team.

Chapter Summary (Cont’d)

- Transport physiology includes multiple factors that should be considered before and during transport.
- Gas laws govern the body’s physiological response to variables of temperature, pressure, volume, and relative mass of gas.
Chapter Summary (Cont’d)

- Boyle’s law presumes that if temperature is constant, the volume of gas is inversely proportional to its pressure.
- Dalton’s law, the law of partial pressure, states that “total partial pressure of the gas mixture is equal to the sum of partial pressures.”

Chapter Summary (Cont’d)

- Charles’ law expresses that the volume of a fixed mass of gas held at constant pressure varies directly with absolute temperature.
- Gay-Lussac’s law is sometimes combined with Charles’ law because it deals with the relation between pressure and temperature.

Chapter Summary (Cont’d)

- Henry’s law is associated with decompression sickness.
- Graham’s law describes how gases move from an area of higher pressure/concentration to an area of lower pressure/concentration.
- Seven stressors are identified that may be caused by air transport.
Chapter Summary (Cont’d)

- Treatment for hypoxia/hyperventilation includes administering 100% oxygen, initiating positive-pressure ventilation, regulating breathing, watching for hyperventilation, checking equipment, and descending.

- Barometric pressure changes can cause several effects during ascent and descent.

Chapter Summary (Cont’d)

- Patients already ill or injured can have difficulty maintaining body temperature; changes in ambient air temperature during transport can affect the patient.

- Humidity is the concentration of water vapor in air; changes can require the provider to modify patient care.

Chapter Summary (Cont’d)

- Noise affects the ability of the flight crew to communicate, alters patient hearing, and can promote varying levels of fatigue.

- Vibration is defined as the motion of an object in relation to a reference point, usually an object at rest.

- Fatigue is the end product of all exposures that can occur while person is in an aircraft.
Chapter Summary (Cont’d)

- Criteria for patient transport are conditions required for the use of an aircraft for transport
- Critically ill medical patients may require transport by fixed-/rotor-wing aircraft based on defined criteria
- Injured trauma patients may meet established criteria for transport by rotor-/or fixed-wing aircraft

Chapter Summary (Cont’d)

- Other considerations may prevent the use of aircraft for transporting patients
- Patient preparation includes actions to be taken before placing the patient in the aircraft
- Hospital-to-hospital transport is typically done by fixed-wing aircraft but depends on a variety of factors

Chapter Summary (Cont’d)

- Scene-to-hospital transport is typically done by a rotor-wing aircraft; it more commonly involves trauma patients
- Landing site preparation includes size, location, obstructions, surface conditions, night operations, communication, and general safety