Chapter 1

Principles of Pharmacology

Learning Objectives

- Explain the difference between a drug’s generic name and trade name
- Explain concepts of pharmacology, pharmacokinetics, receptor interactions, and pharmacodynamics
- Explain the dose-response relationship

Learning Objectives

- Define enteral and parenteral medications, and identify the routes of administration for each
- Explain first-pass metabolism
- Explain the process of drug metabolism and excretion
Learning Objectives

- Define passive diffusion, carrier-mediated facilitated diffusion, active transport, and passive transport
- Explain the difference and relationship between an agonist drug and antagonist drug

Learning Objectives

- Explain the role of the autonomic nervous system and alpha₁, alpha₂, beta₁, and beta₂ receptors
- Discuss medications used to stimulate the adrenergic receptors: epinephrine, norepinephrine, dopamine, dobutamine, and phenylephrine

Learning Objectives

- Discuss medications used to block the adrenergic receptors: atropine sulfate and scopolamine
Introduction

- Potential causes of level of consciousness
 - Cardiac arrhythmia
 - Diabetic emergency
 - Seizure
 - Toxic ingestion or overdose
 - Stroke
 - Traumatic brain injury

Introduction

- Treatment priorities are the same for all patients.
 - Scene safety
 - Airway
 - Breathing
 - Circulation

Introduction

- Pharmacology can be challenging to master.
 - All drugs have:
 - Specific actions
 - Indications
 - Dosages
 - Adverse effects
Drug Names

- All drugs have at least two names.
 - **Generic**
 - Registered with Food and Drug Administration (FDA)
 - Listed in United States Pharmacopeia-National Formulary (USP-NF)
 - Written in lower case
 - **Trade**
 - Created by pharmaceutical companies
 - When a pharmaceutical company discovers a new drug, scientists assign it a chemical name
 - Manufacturer proposes a generic name to FDA for approval
 - Company then creates a memorable and descriptive trade name
 - Always begin with a capital letter

General Principles

- When approaching pharmacology in general terms, consider:
 - How drug gets into the body
 - How drug moves around the body
 - What tissues drug is able to reach
 - What makes drug work
 - How drug is broken down
 - How drug is removed from the body
General Principles

- **Pharmacology**
 - Study of biochemical and physiologic properties of medications

- **Properties of medications include:**
 - Mechanism of action
 - Indications
 - Adverse effects
 - Contraindications
 - Toxicity

General Principles

- **Pharmacokinetics**
 - How medication acts
 - How it is absorbed into bloodstream
 - How it is distributed throughout body
 - How the body metabolizes drug
 - How it is eliminated

General Principles

- **Receptor interactions**
 - Sites of various tissues to which some drugs bind to exert their physiologic effects

- **Pharmacodynamics**
 - Explains how drug works and interacts with various receptors, other drugs, and enzyme systems within body
General Principles

• Absorption
 ➢ Movement of medication from point of administration into bloodstream for movement throughout body
 ➢ Factors that affect absorption:
 * Dosage
 * Route of administration

General Principles

• Medication dosage
 ➢ Dose
 * Amount of medication administered
 ➢ Dosage
 * Size, frequency, and number of doses to be administered

General Principles

• Medication dosage
 ➢ Dose-response relationship/dose-response curve
 * As dosage increases, so does physiologic effect manifested by drug
 * Effect continues to increase with increasing doses to a point at which the medication no longer produces the desired physiologic effect
General Principles

- Medication form and routes
 - Single medication comes in variety of forms
 - Determined by nature and urgency of medical problem

- Oral
 - Appropriate for stable, chronic conditions
 - Must be swallowed
 - Travel to the stomach
 - Broken down
 - Absorbed in intestine
 - Passed through bloodstream
 - Delivered to site of action
General Principles

- Medication form and routes
 - Enteral
 - Absorbed through GI tract
 - Given orally or rectally
 - Must first pass through liver before being distributed throughout body
 - First pass metabolism
 - Drug is partially metabolized
 - Reduces amount of medication available
 - Variable rate of absorption
 - Potential irritation of mucous lining of the stomach or intestine
 - Possible patient noncompliance
 - Most common and safest route
 - Slow absorption prevents rapid and high blood levels that lead to adverse effects
 - Convenient, without need for sterile technique

- Parenteral
 - Bypass GI tract
 - Injectable medications – directly into muscle, vein, or subcutaneous tissue
 - Rapidly available and circulate throughout body in minutes
 - Requires special training and/or special equipment
 - IV is preferred route for cardiac medications in ALS situations
General Principles

- **Medication form and routes**
 - **Loading dose**
 - Rapid therapeutic concentration of drugs in life-threatening emergency
 - Factors that determine dose:
 - Desired serum concentration
 - Volume of distribution
 - Administered via IV to achieve rapid 100% bioavailability
 - **Bioavailability**
 - Percentage of administered drug available in bloodstream to act at target tissue
 - Dose administered minus amount not absorbed by intestine and amount not metabolized by the liver
- **Maintenance dose**
 - Maintains an average concentration of drug at serum-steady states
 - In absence of loading dose, 5 half-lives must pass to achieve steady state of drug concentration
 - **Half-life**
 - Time required for concentration of medication in bloodstream to decrease to half its original level
General Principles

- Medication form and routes
 - Duration of action:
 - Amount of time a single dose produces desired effect
 - Inhaled medications:
 - Used to deliver medication for asthma
 - Are rapidly active, easy to administer, convenient
 - Immediately act on lungs and absorbed into bloodstream
 - Can be given in liquid form

- Liquid medications:
 - Nebulized

General Principles

- Medication form and routes
 - Buccal administration:
 - Administered between cheeks and gums
 - Rapidly absorbed
 - Most common: glucose gel
 - Sublingual administration:
 - Placed under patient’s tongue
 - Rapidly absorbed through oral mucous membranes
 - Most common: nitroglycerin
General Principles

- Medication form and routes
 - Transdermal administration
 - Across the skin
 - Gas
 - Inhaled
 - Most common – O₂
 - Nitrous oxide

Drug Metabolism and Excretion

- Breakdown and change of drug by various chemical reactions throughout body

- Biotransformation
 - Medications are broken down by the liver into active or inactive compound

Drug Metabolism and Excretion

- When drug is absorbed by GI tract, must first go to liver and be acted on by liver enzymes
 - Sites of drug metabolism
 - Liver
 - Kidneys
 - Lungs
Drug Metabolism and Excretion

- **Metabolism**
 - Often changes chemical nature of medication, making it inactive
 - Can change effectiveness of medication
 - Patients in whom drug metabolism is increased often require higher dosing
 - Slowed metabolic rate results in a decrease in the breakdown

- **Factors that alter drug metabolism:**
 - Patient age
 - Route of administration
 - Dosage
 - Genetic predisposition of patient
 - Diet or starvation
 - Preexisting disease
 - First-pass metabolism for drug given orally requires significantly higher dose than if given by parenteral route

- **Drug excretion**
 - Removal of drug or metabolite from body
 - Kidney is typically the organ responsible for removal
 - Liver does so less frequently
Pharmacokinetics

- Study of drug absorption, distribution, and excretion
- Absorption determines how rapidly medication becomes available for therapeutic effect
 - More quickly absorbed = more quickly it will assist patient
 - Occurs from any site at which medication is administered

Pharmacokinetics

- First-order kinetics
 - Occurs for all routes, except for IV
 - Constant fraction of medication is absorbed into bloodstream
- Zero-order kinetics
 - Absorption is not delayed
 - Administered directly into bloodstream
 - 100% of medication is available in a brief period

Pharmacokinetics

- Drug distribution
 - Transportation of drug through bloodstream to various tissues and target site
 - Factors that determine how rapidly and to what magnitude medication can accumulate in tissue:
 * Organs that have rich blood supplies receive drug rapidly
 * Lipid or fat-soluble drugs easily cross membranes that separate body compartments
 * Lipid insoluble drugs take longer to cross body compartments
Pharmacokinetics

- Drug distribution
 - Volume of distribution
 - Space that drug would occupy
 - Drug with a high volume of distribution
 - Is fat soluble
 - Can easily pass through membranes into body compartments

Pharmacokinetics

- Drug distribution
 - Bioavailability
 - Fraction of drug that reaches circulation
 - Factors that alter bioavailability:
 - How rapidly medication breaks down and is absorbed in intestinal tract
 - Dietary habits of patient
 - Size of tablet
 - Formulation of medication

Pharmacokinetics

- Drug distribution
 - How medication is absorbed through intestinal tract depends on physical and chemical properties of drug
Pharmacokinetics

- Drug distribution
 - Passive diffusion
 - Occurs when medications penetrate cells by diffusing through cells' membranes
 - Factors for passive diffusion:
 - Chemical nature of drug
 - Chemical charge, fat or water solubility, concentration of drug within body

- Drug distribution
 - Carrier-mediated facilitated diffusion
 - Transportation of drug into a particular cell depends on a second molecule to carry the drug molecule into the cell
 - Administered drug accumulates outside cell membrane
 - Drug binds with carrier macromolecule
 - Carrier molecule then transports bound medication to its destination inside cell

- Drug distribution
 - Carrier-mediated facilitated diffusion
 - Once inside cell, the bound drug dissociates from carrier molecule
 - Drug molecules go to their target site to produce desired effect
 - A saturable process
 - External concentrations do not increase rate of influx
Pharmacokinetics

- Drug distribution
 - Active transport
 * Requires macromolecule to assist in transport
 * Capable of reaching point of saturation
 * Molecules that transport drugs require energy

- Drug distribution
 - Passive transport
 * Occurs when drug molecule moves down concentration gradient
 * Drug moves from area of high concentration to area of low concentration
 * Factors that determine to what degree and how rapidly drug moves into passive transport:
 * Size of drug molecule
 * How easily drug dissolves in water or fat
 * Concentration of drug in body compartments

- Endocytosis
 - Minor method of drug movement
 - Cell forms sac around drug molecule with cell membrane
 - Cell membrane folds inward, taking drug into the cell

- Onset of action
 - Time interval from administration to desired effect
Pharmacokinetics

- **Therapeutic index (TI)**
 - Measurement of the relative safety of drug
 - Factors used to determine:
 - Effective dose 50 (ED\textsubscript{50})
 - Lethal dose 50 (LD\textsubscript{50})
 - Calculated as follows:
 - $TI = \frac{LD_{50}}{ED_{50}}$

Pharmacodynamics

- Explains how drugs work

- **Mechanism of action**
 - Way drug works at target tissue
 - Drug/receptor interactions
 - Drug/enzyme interactions
 - Nonspecific drug interactions

Pharmacodynamics

- **Drug/receptor interactions**
 - Drugs have complex shapes
 - Drugs bind to a receptor
 - Combined drug/receptor interaction then allows drug to act on target tissue
 - Reversible binding
 - Occurs when drug is able to separate from cell’s receptor
 - When drug is removed from receptor, effect of drug stops
 - Irreversible binding
 - Some medications are unable to separate from receptor after they bind to receptor
Pharmacodynamics

- Drug/receptor interactions
 - Agonist
 - Drug that produces desired physiologic effect upon binding with receptor
 - Turn things on
 - Antagonist
 - Drug that diminishes or eradicates physiologic effect of agonist
 - Turn things off

Pharmacodynamics

- Drug/receptor interactions
 - Agonist
 - Drug that produces desired physiologic effect upon binding with receptor
 - Turn things on
 - Antagonist
 - Drug that diminishes or eradicates physiologic effect of agonist
 - Turn things off

- Pharmacologic antagonism
 - Occurs when antagonist binds to receptor and prevents biologic effect of agonist
 - Competitive antagonists
 - Can bind to the receptor in a reversible fashion
 - Noncompetitive antagonists
 - Irreversibly binds to the receptor
Pharmacodynamics

- **Drug/receptor interactions**
 - **Attraction**
 - Drugs and receptors have some degree of chemical attraction toward one another
 - **Efficacy**
 - Ability of drug to produce desired biologic effect by binding to and unlocking a given receptor

- **Pharmacodynamics**

 - **Drug/receptor interactions**
 - **Potency**
 - Term used to compare different doses of 2 medications in producing same effect
 - Is independent of that medication's efficacy
 - **Summation**
 - Occurs when 2 medications with same effect given together produce effect in equal magnitude to effects of 2 drugs given independently

- **Pharmacodynamics**

 - **Drug/receptor interactions**
 - **Synergism**
 - Observed effect of 2 medications when given concurrently is greater than effects of medications when given individually
 - Combined effect greater than effect of drug A + effect of drug B
 - **Potentiation**
 - Final enhancement of drug's effect
 - Occurs when drug lacking effect of its own increases effect of second drug
Pharmacodynamics

- Drug/enzyme interactions
 - Enzymes
 - Chemicals or compounds that control various chemical changes and reactions within the body
 - Drugs interact with enzymes and increase/decrease enzyme’s mediated chemical reaction
 - Drugs are capable of binding/interacting with various enzymes
 - Either accelerate or arrest their actions

Pharmacodynamics

- Drug/enzyme interactions
 - Enzyme works by binding to starting compound (substrate)
 - Some drugs that act on enzyme systems work by:
 - Mimicking substrate molecule
 - Binding with enzyme system
 - Clogging chemical reaction regulated by that particular enzyme
 - Other drugs can bind enzymes and accelerate a chemical reaction

Pharmacodynamics

- Nonspecific drug interactions
 - Occur when drug acts on target organ/tissue in a method that does not require binding of drug with receptor or enzyme
 - Directly acts on cell or cell’s membrane
Drug Actions and Effects

- Often produce side effects
 - Benign annoyances
 - Headaches
 - Nausea
 - Drowsiness
 - Often treated by reducing dosage or eliminating offending medication

Drug Actions and Effects

- Adverse effects
 - Considered serious
 - Renal failure
 - Bleeding
 - Bone marrow suppression
 - Progression of heart disease

- Idiosyncratic response
 - Rare and unpredicted response to medication

Drug Actions and Effects

- Allergic response
 - Occurs when patient mounts antibody response to a medication to which he or she has been previously sensitized
 - When reexposed to medication, responds with signs/symptoms such as:
 - Rash
 - Itching
 - Swelling
Drug Actions and Effects

- Anaphylactic reaction
 - Allergic reaction with life-threatening manifestations
 - Signs/symptoms:
 - Swelling of airway
 - Inability to breathe
 - Hypotension
 - Shock

- Drug interaction
 - Occurs when effects of 1 drug are modified by or interfere with effects of second drug administered concurrently
 - Result: the effect of 1 drug is increased by the second
 - Two types occur:
 - Those that alter plasma levels of particular medication
 - Those that alter effects of medication

- Drug interaction
 - Many drugs are metabolized by liver enzyme cytochrome P450
 - Theophylline
 - Warfarin
 - Cimetidine
 - Antidepressants
Drug Actions and Effects

- Drug interaction
 - Drugs are able to interact with food and alcohol
 - Via the cytochrome P450 system and competition with the drug’s binding site
 - Most common: monoamine oxidase inhibitors

Large element of drug therapy is manipulation of physiologic functions:
- Heart rate
- BP
- Respiratory effort
- Bowel functions

Autonomic Nervous System (ANS)
- Controls and integrates many major body functions

- Somatic nervous system
 - Controls skeletal muscles and movement

- Provides involuntary control of internal body functions
Autonomic Nervous System

- 2 divisions:
 - Sympathetic
 - Parasympathetic

- Both divisions innervate the:
 - Heart
 - Bronchial smooth muscle
 - Iris of the eye
 - Salivary glands
 - Urinary bladder

Autonomic Nervous System

- Sympathetic nervous system
 - Also innervates vascular smooth muscle, sweat glands, and adrenal medulla
 - Readies body to handle stress
 - Fight-or-flight response
 - Medications that exert effects on the sympathetic nervous system use adrenergic receptors (adrenergic agonists)
Autonomic Nervous System

- Parasympathetic nervous system
 - Responsible for routine housekeeping chores of body
 - Slow heart rate
 - Produce acid for the stomach
 - Empty bladder and bowels
 - Drugs that act on parasympathetic nervous system are called cholinergic agonists

- Adrenergic receptors and activating drugs
 - Are commonly manipulated by medications
 - Adrenaline/epinephrine
 - Increases heart rate
 - Increases heart contractility
 - Increases BP
 - Dilates bronchioles of lungs
 - Net result is to ready the individual for fight-or-flight response
 - Regulates effects through adrenergic receptors:
 - Alpha1
 - Primarily located on peripheral blood vessels
 - Stimulation results in vasoconstriction and elevation of systemic BPs
 - Alpha2
 - Located on nerve endings
 - Provide negative feedback to nerves in sympathetic nervous system
 - Signals process when goal or target is reached
Autonomic Nervous System

- Adrenergic receptors and activating drugs
 - Blood vessels
 - Tone of the vascular smooth muscle is under control of adrenergic receptors
 - Vascular smooth muscles contract and decrease diameter of blood vessels
Autonomic Nervous System

1. Adrenergic receptors and activating drugs
 - Heart
 * Beta agonists are capable of mediating their effect on the heart through the beta, receptor
 * When a cardiac beta receptor is stimulated by a beta agonist:
 ‣ Increased heart rate
 ‣ Increased cardiac output

2. Adrenergic receptors and activating drugs
 - Eyes
 * Muscles of the eye responsible for pupil dilation are stimulated by alpha agonists
 * Drugs that act on both alpha and beta receptors alter pressure inside eye
 - Respiratory tract
 * Stimulation of beta_2 receptors of bronchial smooth muscles results in relaxation of muscles and dilation of the airway
 * Inhaled bronchodilators stimulate beta_2 receptors

3. Drugs that stimulate adrenergic receptors
 - Adrenergic receptors must mimic shape and structure of native agonists of adrenergic receptors
 - Sympathomimetic drugs
 * Mimic actions of sympathetic nervous system
Autonomic Nervous System

- Drugs that stimulate adrenergic receptors
 - In body's natural production of sympathomimetic hormones:
 - Dopamine is precursor to norepinephrine
 - Norepinephrine is precursor to epinephrine
 - Precursor: substance or drug that precedes another substance in development of substance or drug

- When body makes epinephrine, molecule goes through series of modifications before becoming epinephrine
 - Dopamine
 - Primarily stimulates beta_1 receptors of the heart
 - Causes release of norepinephrine from the ANS
 - Can increase heart rate and cardiac output
 - As dopamine is increased, stimulates alpha receptors
 - At higher doses, acts like an epinephrine infusion

- Norepinephrine
 - Similar to epinephrine in its action on beta_1
 - Has less potency on alpha receptors
 - No action on beta_2 receptors
Autonomic Nervous System

- Drugs that stimulate adrenergic receptors
 - Dobutamine
 - Synthetic sympathomimetic drug
 - Adrenergic agent, inotropic
 - Stimulates beta_1 receptors
 - Used to improve cardiac performance in patients with CHF

Autonomic Nervous System

- Drugs that stimulate adrenergic receptors
 - Phenylephrine
 - Pure alpha agonist capable of increasing BP
 - Used as vasopressor in conditions such as septic shock

Autonomic Nervous System

- Drugs that stimulate adrenergic receptors
 - Epinephrine (EpiPen)
 - Binds both alpha and beta receptors
 - Effects on heart are mediated primarily by beta receptors
 - Results in increases in:
 - BP
 - Heart rate
 - Cardiac contractility
 - Cardiac output
 - Can cause cardiac arrhythmias
 - Alpha stimulation causes vasoconstriction and elevation of BP
Autonomic Nervous System

- Drugs that block adrenergic receptors
 - Stimulation of adrenergic receptors influences physiologic responses in different organ systems
 - Beta blockers prevent naturally occurring beta agonists from stimulating the receptor
 - Nonselective beta blockers
 - Selective beta blockers
 - Have both negative chronotropic and inotropic effects

Autonomic Nervous System

- Drugs that block adrenergic receptors
 - Chronotropic drugs affect heart rate
 - Inotropic drugs affect magnitude of the squeeze of heart muscle
 - Reduction of heart rate and inotropy are useful with cardiac disease
 - Conserves O₂ for patients with heart disease
 - Blockage of β₂ receptors results in bronchoconstriction in patients with asthma

Autonomic Nervous System

- Drugs that block adrenergic receptors
 - Propranolol
 - Nonselective beta blocker
 - Can decrease heart rate and cardiac output
 - Beta₁ selective blockers
 - Reduce heart rate and O₂ consumption without adversely affecting lung function
 - Metoprolol
 - Atenolol
Autonomic Nervous System

- Cholinergic receptors and activating drugs
 - Cholinergic receptors
 - Receptors of parasympathetic nervous system
 - Acetylcholine
 - Neurotransmitter used by parasympathetic nervous system
 - Acts on various organs of the body
 - Used in sympathetic nervous system to relay messages, not as neurotransmitter

Autonomic Nervous System

- Cholinergic receptors and activating drugs
 - Types
 - Nicotinic receptors are found in:
 - CNS
 - Autonomic ganglia
 - Striated muscle
 - Muscarinic receptors are found on:
 - Cardiac and smooth muscle
 - Exocrine glands
 - Brain

Autonomic Nervous System

- Cholinergic receptors and activating drugs
 - Atropine
 - Competes with acetylcholine to bind muscarinic receptors
 - Commonly used for bradycardia
 - Dosage guidelines must be strictly followed
 - In high enough dosages, exerts effects on the pulmonary system
 - Drug of choice in nerve agent and organophosphate poisoning
Autonomic Nervous System

- Cholinergic receptors and activating drugs
 - Scopolamine
 - Competitively binds with muscarinic receptor
 - Does not have as potent effect on the heart and lungs as atropine
 - Commonly used for treatment of motion sickness

Questions?