Chapter 14
Respiratory Emergencies

Learning Objectives
- Define nasal cannula, rebreather face mask, nonrebreather face mask, and Venturi mask
- Discuss use of O₂ in a respiratory emergency
- Describe two types of bronchodilator agents

Learning Objectives
- Discuss benefits of the metered-dose inhaler
- Demonstrate proper procedure for administering medication through metered-dose inhaler
Learning Objectives

- Discuss medications used in treatment of asthma:
 - Albuterol (Proventil, Ventolin)
 - Ipratropium bromide (Atrovent)
 - Albuterol/ipratropium (Combivent)

Learning Objectives

- Discuss medications used as second-line therapy for acute exacerbation of asthma:
 - Methylprednisolone sodium succinate (Solu-Medrol)
 - Hydrocortisone sodium succinate (Solu-Cortef)
 - Aminophylline
 - Magnesium sulfate
 - Racemic epinephrine

Learning Objectives

- Briefly describe key treatment for patients with chronic obstructive pulmonary disease
Introduction

- Prehospital treatment of respiratory distress has produced positive outcomes
 - Increased survival rates
 - Shorter hospital stays
 - Decreased cost to healthcare system

- Prehospital care is aimed at treatment of reversible bronchial constriction

Oxygen

- Most commonly used medication in prehospital care

- Colorless and odorless gas

- Stored in green or aluminum cylinders at pressure of 1800 to 2400 psi

- As O₂ passes through attached regulator, gas pressure is decreased to working pressure of 60 psi

- Contained in nine different sizes of cylinders labeled alphabetically
Oxygen

- Quantity delivered is considered in terms of inspired O₂ and flow
 - Atmosphere consists of 78% nitrogen, 21% O₂, and 1% of variety of gases
 - Fraction of inspired O₂ (FiO₂)
 - Concentration of inspired O₂
 - Normal room air has 21% O₂
 - When supplemental O₂ is given, it increases content of O₂ in blood and subsequently to the heart and peripheral tissues

O₂ delivery devices

- Nasal cannula
 - Creates reservoir filled with O₂-enriched gas
 - When patient inhales, he or she breathes from reservoir
 - Noninvasive means of delivering supplemental O₂ in low-flow fashion
 - O₂ flows through two nasal prongs into oropharynx
 - Acts as O₂ reservoir
 - Increases O₂ concentration
 - Set with a flow rate of 6 L/min delivers O₂ concentration between 35% and 45%
Oxygen delivery devices

Masks are capable of delivering O₂ concentration based on:

- Flow rate
- Reservoir of mask
- Presence or absence of reservoir bag
- Side ports in mask with directional valves

Simple O₂ mask

- Does not have reservoir bag or side ports
- Room gases mix with O₂ inside mask
- At flow rate of 6 to 10 mL/min, can deliver FiO₂ between 30% and 60%
Oxygen

* O₂ delivery devices
 * Rebreather face masks/partial rebreather face masks
 * Have face mask and reservoir bag
 * O₂ accumulates in reservoir bag
 * During inspiration, patient inhales O₂ in reservoir and some room air through side ports
 * Upon exhalation, some of the expired breath goes back into reservoir bag, where it is rebreathed
 * Partial rebreather masks can deliver 60% O₂
 * Nonrebreather face masks
 * Similar to rebreather in appearance and function
 * Have one-way exhalation valves on sides of the mask and reservoir bag
 * Valves on sides of the mask prevent inhalation of room air
 * Valve on reservoir prevents any exhaled breath from entering O₂-rich reservoir
 * Require higher flow rate of 12 to 15 mL/min
 * Can deliver O₂ concentrations close to 100%
Oxygen delivery devices

- Venturi mask
 - Used by EDs
 - Have series of small plastic inserts that fit ports on the mask
 - Regulate concentration of O₂ patient can inhale
 - By changing plastic insert, provider can alter O₂ concentration from 24% to 60%
 - Flow of O₂ depends on desired FiO₂
Oxygen

- Initiation of O_2 therapy
 - Equipment needed:
 - O_2 source
 - O_2 flow meter
 - Mask or cannula

- Procedure:
 - Observe universal precautions
 - When possible, explain to the patient what procedure you are performing and why
 - Ensure the protective seal has been removed from the valve on the tank
 - Quickly open and close valve to blow out any dirt or contaminants out of the tank opening

- Procedure:
 - Place washer over the inlet port on the regulator
 - Open the tank to test for an airtight seal
 - Adjust the flow meter to the desired setting
 - When finished, turn off flow meter and close tank valve
 - Open flow meter momentarily to release pressure from the regulator
Oxygen

- Patients who require continuous O_2 at home can require transtracheal catheter
 - Inserted surgically
 - Used for long-term O_2 therapy in patients with chronic lung disease
 - Held in place by a necklace

Bronchodilators

- Patients with asthma and COPD have respiratory distress from functional narrowing of conducting airways
 - Bronchospasm
 - Spasm of bronchial smooth muscle
 - Results in decrease in airway diameter
 - Edema of mucosa that lines respiratory tract
 - Results in thickening of mucosal linings and resultant decrease in airway diameter
 - Increased secretions

Poiseuille’s law

- Law of physics that determines resistance and flow of gas
- Flow of gas through a tube is proportional to radius of the airway to fourth power
Bronchodilators

- Selective agents
 - Act preferentially on bronchial smooth muscle
 - Improves patient's condition while minimizing side effects
 - Beta2 agonists are sympathomimetic medications that target beta2 receptors
 - Excessive doses can produce effects seen with alpha and beta1 stimulation

- Use with caution in patients with history of heart disease
- Always monitor ECG during and after treatments
- Examples:
 - Albuterol (Proventil)
 - Terbutaline (Brethine)
 - Metaproterenol (Alupent)
 - Formoterol (Foradil)
 - Pirbuterol (Maxair)

- Nonselective agents
 - Act on alpha, beta1, and beta2 adrenergic receptors
 - Alpha receptors
 - Stimulation causes constriction of peripheral blood vessels
 - Results in BP elevation
 - Beta1 receptors
 - Primarily located in cardiac tissue
 - Stimulation causes increased heart rate and cardiac contractility
Bronchodilators

- Nonselective agents
 - Beta_2 receptors
 - Stimulation results in bronchodilation by relaxation of bronchial smooth muscle
 - Example:
 - Racemic epinephrine

Inhalation Delivery of Medications

- Delivery of beta_2-specific medications can be accomplished by:
 - Nebulization
 - Parenteral administration
 - Oral administration

Inhalation Delivery of Medications

- Nebulizer
 - Instrument that converts liquid medication into fine mist to be inhaled
 - Pneumatic nebulizer uses gas as driving force to make conversion
 - Ultrasonic nebulizers use ultrasonic sound for conversion
 - Most effective method of administration
 - Delivers small particles of medication directly to receptor site in the lung by inhalation
Inhalation Delivery of Medications

- Nebulization therapy
 - Equipment needed:
 - Nebulizer unit
 - O₂ source
 - Medication

Procedure:
- Observe universal precautions
- Verify drug order
- Confirm right patient, right medication, right dose, right route, and right time
- When possible, explain to patient what medication you are going to administer and why
- Prepare all necessary equipment and medication to be administered

- Expose medication cup by unscrewing lid
- Add medication to cup, and reattach lid
- Attach mouthpiece and tubing to the nebulizer
- Connect O₂-connecting hose to appropriate connector on nebulizer cup
- Attach other end of O₂ tubing to O₂ source, and adjust flow of O₂ to 6 L/min
Inhalation Delivery of Medications

- **Procedure:**
 - Instruct patient to hold nebulizer mouthpiece in his mouth and breathe as deeply as possible
 - Monitor patient throughout treatment, and reassess ventilator adequacy and vital signs after treatment has been completed
 - Repeat treatment if needed, and provide supplemental O₂ as needed
 - Record time of drug administration in PCR
 - Evaluate patient for desired effects of medication and any adverse effects

Inhalation Delivery of Medications

- **Metered-dose inhaler (MDI)**
 - Delivers predetermined amount of medication in correct particle size propelled by small amount of gas
 - Has two parts: canister and mouthpiece
 - If used improperly, medication will not reach its intended site in the lung
Inhalation Delivery of Medications

- MDI
 - Spacer device
 - Facilitates slower movement of medication particles
 - When spacer is not available, holding MDI 2 inches from mouth also causes particles to slow

Inhalation Delivery of Medications

- MDI use
 - Equipment needed:
 - MDI with medication
 - PPE

Inhalation Delivery of Medications

- MDI use
 - Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm right patient, right medication, right dose, right route, and right time
 - Confirm with patient that no allergies to the medication
 - When possible, explain to patient what medication you are going to administer and why
 - Shake inhaler for 5 to 10 sec
Inhalation Delivery of Medications

- MDI use
 - Procedure:
 - Insert outlet tube into patient’s mouth
 - Direct patient to squeeze ends of medication canister to deliver the medication
 - Instruct patient to inhale a slow, full, deep breath
 - Instruct patient to hold breath for up to 5 sec if possible
 - Repeat if indicated
 - Record time of drug administration in the PCR
 - Evaluate patient for desired effects of the medication and any adverse effects

- MDI with spacer
 - Equipment needed:
 - MDI with medication
 - Spacer
 - PPE

Inhalation Delivery of Medications

- MDI with spacer
 - Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm right patient, right medication, right dose, right route, and right time
 - Confirm with patient that no allergies to the medication
 - When possible, explain to patient what medication you are going to administer and why
 - Shake inhaler for 5 to 10 sec
Inhalation Delivery of Medications

- MDI with spacer
 - Procedure:
 - Insert outlet tube into spacer
 - Instruct patient to place spacer device into his mouth and close lips over it
 - Direct patient to squeeze ends of the medication canister to deliver medication
 - Instruct patient to inhale a slow, full, deep breath
 - Instruct patient to hold the breath for up to 10 sec if possible
 - Wait approximately 60 sec and repeat
 - Reassess breath sounds, vital signs, and ventilations
 - Record time of drug administration in the PCR
 - Evaluate patient for desired effects of the medication and any adverse effects

Overview of Asthma

- Caused by trigger reaction
 - Intrinsic trigger
 - Within the body
 - Exertion
 - Anxiety
 - Extrinsic trigger
 - Outside the body
 - Animal dander
 - Dust
 - Insect droppings
 - Pollen
 - Cleaning chemicals
Overview of Asthma

- Management
 - Avoid or mitigate triggers
 - Reverse acute bronchospasm
 - First line is inhaled beta₂-specific drugs
 - If inhaled bronchodilators fail, initiate IV medications
 - Albuterol (Proventil, Ventolin)
 - Most common
 - Targets only the beta₂ receptor

- Management
 - Previous beta₂ agonists had varying effects on alpha and beta₂ receptors
 - Stimulation of alpha and beta₂ sites cause unwanted reactions
 - Vasoconstriction
 - Increased heart rate

- Management
 - First generation drugs have significant beta₁ effects with beta₂ effects
 - Second generation drugs were more beta₂ specific, but still increased the heart rate
 - Third generation drugs target beta₂ receptors
 - Have little systemic effects
 - Multiple and continuous treatments can be given
Overview of Asthma

Management

- Levalbuterol (Xopenex)
 - Purified form of albuterol
 - As effective as albuterol
 - Results in fewer undesirable side effects
 - Tachycardia
 - Tremors

- Ipratropium bromide (Atrovent)
 - Used in more severe exacerbations or with limited response to albuterol
 - Anticholinergic
 - More effective in peripheral airways
 - More relief for patients with COPD
 - Albuterol/ipratropium (Combivent)
 - Combination product

- Patient gasping for breath
- Using accessory muscles of respiration
- Wheezing
- Corticosteroids treat inflammatory processes in asthma and COPD
Overview of Asthma

- Management
 - Second line therapy for acute exacerbation of asthma
 - Peak expiratory flow rate (PEFR)
 - Objective assessment to determine severity of exacerbation
 - When less than 50%, corticosteroids should be administered after ipratropium bromide
 - Corticosteroids should be considered when PEFR does not improve by at least 10% after bronchodilator therapy or when PEFR is less than 70% after 1 hour of therapy

- Management
 - Second line therapy for acute exacerbation of asthma
 - Aminophylline
 - Reduces smooth muscle bronchospasm associated with acute respiratory distress
 - Can reach therapeutic levels quickly
 - Has narrow therapeutic index
 - Begin by administering loading dose to place serum levels in therapeutic range

- Management
 - Second line therapy for acute exacerbation of asthma
 - Aminophylline
 - Maintenance infusion is required to keep at therapeutic level
 - Patients with renal or hepatic dysfunction can have impaired secretions
 - Smokers or tobacco chewers need higher levels
 - Generally not used in the prehospital field
Overview of Asthma

- Management
 - Second line therapy for acute exacerbation of asthma
 - Magnesium sulfate
 - Decreases bronchospasm in some patients with asthma
 - Used when patients have inadequate response to beta2 agonists

- Epinephrine
 - Has strong beta2 effects
 - Strong undesirable alpha and beta1 effects
 - Rebound bronchospasm can occur
 - Effects are short lived
 - Use with caution

COPD

- Obstruction in the pulmonary tree
- Emphysema
- Chronic bronchitis
- Increase in sputum production and resultant bronchospasm
COPD

- Management
 - Oxygenation and ventilation
 - Patients with COPD breathe on hypoxic respiratory drive
 - Requires mild degree of hypoxia to continue breathing
 - If patient is given too much O₂:
 - Hypoxic respiratory drive is removed
 - Stimulus for spontaneous respirations is removed
 - Bronchodilators and steroids are used for treatment

Questions?