Chapter 19

Special Considerations: Pregnancy, Pediatrics, Geriatrics, and Renal Failure

Learning Objectives

- Explain how physiologic changes in pregnancy can alter pharmacologic mechanisms of a drug
- Differentiate five categories in Pregnancy Safety Category system: A, B, C, D, and X

Learning Objectives

- Discuss medications used for treatment of asthma during pregnancy:
 - Albuterol (Proventil, Ventolin)
 - Terbutaline (Brethine)
 - Ipratropium bromide (Atrovent)
 - Prednisone
 - Methylprednisolone sodium succinate (Solu-Medrol)
 - Hydrocortisone sodium succinate (Solu-Cortef)
Learning Objectives

- Explain the difference between chronic hypertension and gestational hypertension.
- Discuss medications used in the treatment of hypertensive conditions during pregnancy:
 - Labetalol (Normodyne, Trandate)
 - Hydralazine (Apresoline)
 - Magnesium sulfate

Learning Objectives

- Explain the impact of diabetic ketoacidosis in pregnant patients.
- Explain why BP is not a good early indicator of perfusion in pediatric patients in shock.
- Discuss why intraosseous lines are a beneficial alternative to IV lines in gaining vascular access in pediatric patients.

Learning Objectives

- Explain why pediatric drug dosages are often determined by weight.
- Discuss medications used in the treatment of pediatric bradycardia:
 - Epinephrine
 - Atropine sulfate
Learning Objectives

- Discuss medications used in treatment of pediatric tachycardia:
 - Adenosine (Adenocard)
 - Amiodarone (Cordarone)

- Define polypharmacy and its impact on the treatment of elderly patients

Learning Objectives

- Explain hemodialysis and peritoneal dialysis in treatment of patients in end-stage renal disease

Introduction

- Drug therapy in certain groups requires special considerations regarding:
 - Route of administration
 - Dosage
 - Adverse effects
 - Drug metabolism
 - Elimination
Introduction

- Pregnant patient
 - Caring for two patients
 - Drugs administered to mother go to fetus
 - Ensure medication does not adversely affect physiology or development of unborn child

- Pediatric patients
 - IV access is more difficult
 - Require dose adjustment

- Elderly patients
 - Have gradual to profound deterioration in function of:
 - Heart
 - Lungs
 - Kidneys
 - Liver
 - Polypharmacy

- Renal failure
 - Unable to excrete drugs that require excretion by kidneys
 - Require smaller doses
 - Must be monitored closely for toxicity
Special Consideration in Pregnancy

- Physiologic changes
 - Can alter medication through:
 - Absorption
 - Distribution
 - Breakdown
 - Elimination

- Morning sickness
 - Caused by hormone-induced delay in gastric emptying

- Have higher minute ventilation
 - Inhaled medications result in systemic effects more rapidly
 - Inhaled drugs are absorbed more rapidly than oral medications

- Weight gain
 - Alters body composition
 - Pregnancy increases percentage of body fat
 - Creates larger volume of distribution for fat-soluble drugs
 - Decreases concentration of albumin in the blood
 - Serum albumin is a major protein in blood plasma
 - Is important in maintaining colloid osmotic pressure of blood
 - Reduction affects drug distribution and plasma levels
Special Consideration in Pregnancy

- Decreased liver function and increased renal function
 - Breakdown of a drug by the liver can be slowed
 - Excretion of drug's byproducts can be increased by an improvement in kidney function

Special Consideration in Pregnancy

- Medication risks
 - Placenta is lifeline between mother and fetus
 - O₂, nutrients, and medications cross from mother to fetus
 - Medication may have no effect on mother, but toxic effect on fetus
 - Mother’s circulatory system delivers medication to fetus
 - Fetus must break down and excrete drug unassisted by mother
 - Because fetal liver and kidneys are immature, any dose given can potentially have toxic effects on the fetus

Special Consideration in Pregnancy

- Medication risks
 - Must assume all women of reproductive age are pregnant
 - Medication should be given to a patient who is obviously pregnant or potentially pregnant only when benefits outweigh the risks
Special Consideration in Pregnancy

- Medication risks
 - Teratogenic drugs
 - Medications that can result in characteristic set of malformations in the fetus
 - Greatest period of vulnerability is between 4th and 12th weeks after last menstrual period
 - Affect development of organ system at a period of vulnerability

- Medication risks
 - FDA classifies drugs into categories based on the risk to the fetus
 - A, B, C, D, or X
 - A is safest
 - B, C, and D are progressively more dangerous
 - X is most dangerous and should be avoided

- Medication risks
 - Drug must cross placenta and enter fetal circulation to affect fetus
 - The greater the effect on the mother, the greater the chance it will cross the placenta and act on the fetus
 - Drugs with large molecular weights are less likely to cross the placenta
 - Heparin
 - Insulin
Special Consideration in Pregnancy

- Medication risks
 - Lipophilic drugs
 - Fat-soluble
 - More likely to cross placenta
 - Diphenhydramine (Benadryl)

- Lipophobic drugs
 - Not fat soluble
 - Have more difficult time crossing placenta
 - Loratadine (Claritin)

- Drugs with short half-lives are safer
 - The longer the drug remains in the mother’s bloodstream, the greater the opportunity it will cross placenta into the fetal bloodstream

Asthma

- Can be exacerbated by pregnancy

- Untreated, can have negative results for both mother and fetus

- Safer for mother to take medications than to have exacerbation of asthma
Asthma Management

- O₂
- Bronchodilator
- β2 agonists are listed as Category C medications
- Albuterol (Proventil, Ventolin)
 - First-line therapy
 - Administered by MDI with spacer or as nebulization therapy

Asthma Management

- Sub-Q terbutaline (Brethine)
- Sub-Q epinephrine
- Ipratropium bromide (Atrovent)
 - Treats patient having severe exacerbation of asthma with PEFR more than 50%
 - Used when patient has unsatisfactory response to treatment with albuterol

Asthma Management

- Corticosteroids
 - Used in severe cases and impending respiratory failure
 - Prednisone
 - Methylprednisolone (Solu-Medrol)
 - Hydrocortisone (Solu-Cortef)
 - When PEFR less than 50% of predicted, administer after ipratropium bromide
 - When PEFR does not improve by 10% after bronchodilator therapy
 - PEFR less than 70% after 1 hour of therapy
Asthma

- Management
 - Corticosteroids
 - Benefits may take several hours after administration
 - IV preparation of steroid may be used in an emergency when oral dosing is not practical
 - Orally administered steroids are rapidly absorbed with nearly complete bioavailability
 - More is not better

Asthma

- Hypertensive crisis
 - Common in pregnancy with incidence of 10% to 15%
 - 15% of all pregnancy-related deaths

Asthma

- Hypertensive crisis
 - Chronic hypertension
 - History of hypertension that precedes pregnancy
 - Preeclampsia
 - Hypertension
 - Protein in urine
 - Edema
 - Eclampsia
 - Woman with preeclampsia has seizures
Asthma

- Hypertensive crisis
 - Gestational hypertension
 - Elevated BP that first occurs in pregnancy but does not meet diagnostic criteria of eclampsia

Management

- Use antihypertensive agents to reduce maternal complications
- Threshold for treatment: diastolic BP over 105 mm Hg or systolic BP over 160 mm Hg
 - Follow protocols or contact medical direction

- Labetalol (Normodyne, Trandate)
 - Possible fetal bradycardia

- Hydralazine (Apresoline)
 - Induces maternal hypotension
 - Should not be used as first-line treatment

- Nitroglycerin
 - Advantage: short half-life of 1 to 3 min
Asthma

- Hypertensive crisis
 - Management
 - Danger of any antihypertensive agent is dropping BP to point when placental blood flow decreases
 - Definitive treatment for eclampsia is delivery of fetus
 - Must prevent seizures
 - Magnesium sulfate is used when diastolic BP is greater than 100 mm Hg

Asthma

- Diabetic ketoacidosis
 - State of insulin deficiency that produces:
 - Hyperglycemia
 - Dehydration
 - Metabolic acidosis

Asthma

- Diabetic ketoacidosis
 - Can be fatal for fetus, with fetal mortality rates at 50%
 - Loss of circulatory blood volume and electrolyte shifts result in lowered placental blood flow and O₂ content
Asthma

- Diabetic ketoacidosis
 - Management
 - ABCs
 - Administer 1 L of isotonic fluid in 1 hour period
 - After initial fluid bolus, continue IV infusion at 250 to 500 mL/hr
 - Continue until blood glucose level is 250 mg/dL
 - After blood sugar level is less than 250 mg/dL, fluid should be changed to one containing 5% dextrose

- During interhospital transfers, initial insulin bolus of 0.1 U/kg IV should be given if ordered
 - Followed by insulin infusion running at a dose of 0.05 to 0.1 U/kg per hour

- Blood glucose should be measured every hour
 - If blood glucose level does not decrease after 2 hours, double initial insulin infusion dose
 - After blood glucose level reaches 250 mg/dL, IV fluid should be changed to one containing 5% dextrose, and insulin infusion decreased by ½
 - After blood glucose level reaches 150 mg/dL, decrease insulin infusion rate to 1 to 2 U/hr
Special Considerations for Pediatric Patients

- **Drug dosing**
 - In adults, 60% of the body based on total body mass is water
 - In infants, 80% is water
 - In 1st year of life, body fat doubles
 - Smaller muscle mass
 - Larger brains and livers in relation to their TBW

- **Large volumes of distribution and rapid metabolic rates**
 - Simple linear reduction in adult dose is not appropriate

- Based on age, weight, body surface area
 - Usually ordered as particular dose in mg per kg or lb
 - Weight-based dose for children is for different ages or weight groups
 - Weight-normalized dose increases as weight of child decreases

- **Hypovolemic shock**
 - BP is not primary vital sign that indicates patient status
 - In pediatric patients, drop in BP is last sign of deterioration
 - Palpate peripheral pulses and evaluate temperature and capillary refill of distal extremities
Special Considerations for Pediatric Patients

- Hypovolemic shock
 - Cardiac output = heart rate multiplied by stroke volume
 - Only mechanism that children have to improve cardiac output is increased heart rate

- Vascular access and management
 - Challenge because pediatric patients:
 - Have small blood vessels
 - Have great amount of subcutaneous fat
 - Are unwilling to cooperate
 - EMS should establish a plan for how much time should be spent attempting to obtain access to each IV site
 - If 1 or 2 lines are not obtained within 2 to 5 min, use alternative method so resuscitation is not delayed
Special Considerations for Pediatric Patients

- Hypovolemic shock
 - Vascular access and management
 - Preferred peripheral site for IV placement is antecubital fossa
 - In infants, a scalp vein or superficial vein of an extremity can be used if larger veins are not accessible

- Additional equipment needed for peripheral sites:
 - Tourniquet
 - 18- to 24-guage angiocatheter

- Disadvantages for peripheral site:
 - Line becomes dislodged
 - Occlusion of the line
 - Possible tissue injury with extravasation of irritants
Special Considerations for Pediatric Patients

• Hypovolemic shock
 ➢ Vascular access and management
 ➢ Intraosseous (IO) lines used when peripheral access is not possible
 ➢ 15- to 18-gauge bone marrow needle with stylet is placed in marrow cavity of child’s tibia
 ➢ Placement is directed perpendicular to flat part of proximal tibia
 ➢ Needle is inserted 1 to 3 cm just medial to tibial tuberosity
 ➢ Catheter is advanced through bone marrow space
Special Considerations for Pediatric Patients

- Hypovolemic shock
 - Vascular access and management
 - IO route, possible complications:
 - Osteomyelitis
 - Cellulitis
 - Infiltration of fluid
 - Anterior compartment syndrome
 - Tibial fracture
 - Fat embolus

- Hypovolemic shock
 - Vascular access and management
 - IV route
 - Not suitable for long-term use
 - Do not place needles in fractured bones or previously used sites
 - Do not place needle in patients with history of osteogenesis imperfecta

- Hypovolemic shock
 - Vascular access and management
 - After IV access is obtained, fluid management and shock treatment can begin
 - Volume expansion is based on weight
 - Give bolus of no more than 10 to 20 mL/kg at a time
 - Use crystalloids
 - After each intervention, a full reassessment of patient’s status is critical
Special Considerations for Pediatric Patients

- **Arrhythmias**
 - Abnormal heart rate
 - Symptoms are acute, usually reversible

Treatment
- Establish airway
- Improve circulation with IV hydration
- Thorough evaluation including history and physical assessment
 - At risk:
 - Congenital heart disease
 - Other disease that can lead to heart failure

- Symptoms:
 - Cardiogenic shock with poor perfusion
 - Pale
 - Short of breath
 - Irritability
 - Changes in mental status
 - Evaluate capillary refill in nail beds over the patella
Special Considerations for Pediatric Patients

- Arrhythmias
 - Too slow heart rate
 - Management
 - Determined by stability of patient
 - Evaluate and establish airway if required
 - Evaluate breathing
 - Determine breathing adequacy
 - If stable and not hypotensive: O₂ and IV fluids

- Too fast heart rate
 - Management
 - ABCs
 - Establish IV
 - Evaluation for dehydration
 - Fever can cause tachycardia
 - IV fluid bolus with either 0.9% normal saline or Ringer lactate at 10 to 20 mL/kg
 - Reassess vital signs after each bolus
Special Considerations for Pediatric Patients

- Arrhythmias
 - Too fast heart rate
 - Management
 - Evaluate rate and width of QRS complex to determine if arrhythmia is supraventricular or ventricular tachycardia
 - Cardioversion at a dose of 0.5 to 1.0 J/kg is warranted

- Too fast heart rate
 - Adenosine (Adenocard)
 - Used if patient is stable but has supraventricular tachycardia
 - Slows heart rate
 - Immediate onset of 10 sec or less
 - Half-life is fast
 - Causes transient atrioventricular block, which appear to be asystole for less than 10 sec

- Amiodarone (Cordarone), procainamide, lidocaine
 - Used for stable ventricular tachycardia
 - If unstable, cardioversion should be used appropriately
Special Considerations for Pediatric Patients

- Management of diabetic ketoacidosis
 - Should not receive bolus of insulin
 - Should receive insulin drip in same fashion as adult
 - Aggressive fluid administration can cause cerebral edema

Special Considerations for Elderly Patients

- Polypharmacy
 - Takes multiple medications for treatment of several medical disorders
 - Possible adverse effect or serious drug interaction

- Lose muscle mass and TBW
 - Drug dose often reduced from that of standard adult dosage
 - Certain drugs require weight-based dosing
 - Possible drug toxicity

Special Considerations for Elderly Patients

- Age-related physiologic changes in medication response are attributable to changes in:
 - Absorption
 * Decreased motility of stomach
 * Reduced production of stomach acid
Special Considerations for Elderly Patients

- Age-related physiologic changes in medication response are attributable to changes in:
 - Breakdown of metabolism
 - From active to nonactive forms by liver is less effective
 - Excretion is affected
 - Blood flow to kidney is reduced with age
 - Ability of kidneys to filtrate and concentrate urine
 - After 30 years, adults lose 6% to 10% of kidney function per decade

- Decreased kidney function results in accumulation of drugs or drug by-products

- Medications that have potential of toxicity in renal disease:
 - Digoxin
 - Antibiotics
 - Antihypertensives
 - Antiarrhythmics

Special Considerations for Elderly Patients

- Proportional increase in body fat and decrease in total body water occurs
 - Fat-soluble drugs will collect in fat stores
 - Decrease in volume of distribution of many drugs
 - Can cause toxic drug levels of water-soluble drugs such as digoxin and theophylline
Special Considerations for Elderly Patients

- Poor nutrition
 - Decreases production of albumin
 - Protein produced by liver
 - Found in blood and interstitial space
 - Many drugs bind to and are transported by albumin
 - Portion of drug that does not bind to albumin is portion that is active

Special Considerations for Elderly Patients

- Any medication administered can have unanticipated interaction and adverse drug effect

- Possible noncompliance because of:
 - Depression
 - Poor memory
 - Dementia
 - Financial restrictions

Special Considerations for Patients with Renal Failure

- Results in permanent loss of kidney function

- Require careful management of their diet, fluid intake, and drug therapy
Special Considerations for Patients with Renal Failure

- Causes of chronic renal failure:
 - Hypertension
 - Diabetes mellitus
 - Trauma
 - Pregnancy
 - Hemorrhage
 - Complications of drug therapy

- End-stage renal disease (ESRD)
 - Cannot make urine
 - Require renal replacement therapy or dialysis

- Hemodialysis
 - Removal of toxic substances from bloodstream by filtering patient’s blood through a machine, then passing blood back to patient
 - Efficient means of cleansing blood
 - Risks are hypotension and arrhythmias

- Peritoneal dialysis
 - Special solution is delivered to patient’s abdomen through catheter
 - Solution dwells in abdomen for a period, absorbing many toxic substances in the blood
 - Does not result in hypotension or require anticoagulation
 - Disadvantages:
 - Length of time required for dialysis
 - Risk for infection to abdominal cavity
Special Considerations for Patients with Renal Failure

- As kidneys fail, internal milieu changes effectiveness of various drugs
 - Patients can develop metabolic acidosis
 - Lose ability to concentrate urine
 - May not tolerate large volumes of IV fluid

- When kidney function is less than 10% of normal, potassium balance is impaired and can accumulate to dangerous and critical levels
- Kidneys have role in forming RBCs
 - Manufacture erythropoietin
 - Patients with renal failure cannot produce, become anemic
 - Epoetin alfa (Epogen) is used for increase in blood count and treat anemia

- Must question need, dosage, and possible interaction of every medication administered
 - Dosage must be reduced in patients with renal failure
Questions?