Chapter 20
Pharmacology–Assisted Intubation

Learning Objectives

- Differentiate goals of rapid sequence induction from rapid sequence intubation
- List six questions to ask when preparing for rapid sequence intubation
- List three goals of rapid sequence intubation

Learning Objectives

- Discuss depolarizing paralytics used in rapid sequence intubation:
 - Succinylcholine (Anectine)
 - Atropine sulfate
Learning Objectives

- Discuss nondepolarizing paralytics used in rapid sequence intubation:
 - Vecuronium (Norcuron)
 - Rocuronium (Zemuron)
 - Atracurium (Tracrium)
 - Pancuronium (Pavulon)

- Discuss deep sedation medications used in rapid sequence intubation:
 - Midazolam (Versed)
 - Etomidate (Amidate)
 - Ketamine (Ketalar)
 - Flumazenil (Romazicon)

- List seven Ps of rapid sequence intubation technique

Introduction

- Endotracheal (ET) intubation is valuable tool
- Rapid sequence intubation (RSI)
 - Key components of technique
 - IV barbiturate
 - Muscular paralytic drugs
 - Goal: patient safely intubated
- Rapid sequence (RS) induction
 - Goal: patient is safely anesthetized
Introduction

- Poorer outcomes for patients with head injuries
 - Possible hyperventilation
 * Severely lowers CO₂ pressures, which constrict brain blood vessels and impair O₂ delivery
 * Prolonged hypoxia during intubation attempts
 - Can be minimized by:
 * Limiting duration of intubation attempts
 * Monitoring pulse oximetry during and after intubation
 * Using end-tidal CO₂ monitoring to guide ventilation rate and volume

RSI Goals

- When performed correctly, patient is:
 - Chemically paralyzed
 - Deeply sedated or anesthetized
 - Endotracheally intubated
RSI Goals

- Medications used allow paramedic to assume control of airway
 - Must ask:
 - If I administer these drugs, will I be able to intubate the patient if he stops breathing?
 - If I am unable to intubate, will I be able to ventilate him?
 - If I am unable to intubate, do I have other options?

RSI Goals

- Medications used allow paramedic to assume control of airway
 - Must ask:
 - Do I have the right equipment on hand? Is the equipment assembled?
 - Does the patient have any medical problems or conditions for which these drugs and techniques are contraindicated?
 - If I do not act, will this patient die or have permanent brain damage?

RSI Goals

- RSI goals:
 - To overcome barriers to intubation by establishing deep sedation and skeletal muscle relaxation while protecting against aspiration of stomach contents into the lungs
 - To provide protection against body’s normal response to intubation, reflexes that can potentially cause cardiac or neurologic deterioration in at-risk patients
 - To provide humane conditions for unpleasant procedure
RSI Goals

- Need for cervical immobilization imparts more limited laryngeal view compared with cases in which neck immobilization is not necessary
 - Sellick maneuver
 - Displace jaw anteriorly can improve visualization

- Sellick maneuver

- Displace jaw anteriorly can improve visualization

RSI Goals

- Look for anatomic problems that could interfere with ability to apply bag-mask device

- Must have rescue airway, such as dual-lumen device
 - Esophageal Combitube double-lumen airway tube is only specific device for difficult airways
 - Translaryngeal catheter ventilation can temporarily deliver O2 if unable to intubate

RSI Goals

- Before administration, ensure proper equipment:
 - Functional line
 - Functional laryngoscope
 - Appropriate sizes of ET tubes
 - Reliable pulse oximeter reading
 - Bag-mask with resuscitation bag attached to ample supply of O2
 - End-tidal CO2 monitor

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
RSI Goals

- Before giving any medications, look for medical identification jewelry
- Consider whether benefits of proceeding outweigh risks of attempting it

RSI Pharmacology

- Chemical paralysis
 - For voluntary skeletal contracture, nerve impulse is generated to brain cells, transmitted to neuron in the spinal canal, then transmitted to nerve that directly communicates with the muscle
 - At each junction between neurons, "hand off" occurs by neurotransmitters being released on one side of the synapse
 - Diffuses across to other side
 - Initiates electrochemical impulse along the nerve

RSI Pharmacology

- Chemical paralysis
 - End of nerve fiber comes into close contact with muscle cell that has receptors for neurotransmitter sent by the nerve cell
 - Neuromuscular junction is between nerve and muscle cell
 - Nerve side is presynaptic membrane
 - Muscle side is postsynaptic membrane
 - Space in between is synaptic cleft
 - Acetylcholine is the chemical transmitter
RSI Pharmacology

- Chemical paralysis
 - Electrochemical signal reaches presynaptic membrane of neuromuscular junction
 - Acetylcholine is released from storage sites at end of nerve cell axon and crosses synaptic cleft to bind to receptors on postsynaptic side
 - Once acetylcholine binds to postsynaptic membrane at special receptors binding sites, specific acetylcholine receptors are unlocked and opened

- Muscle cells contracting in synchrony lead to coordinated muscle contraction
- After acetylcholine binds to its receptor site on postsynaptic membrane, ion flow continues until acetylcholine molecule disengages
- Atropine is used to treat nerve gas toxicity

RSI Pharmacology

- Paralytic drugs
 - Depolarizing paralytics
 - Succinylcholine (SUX) is the only one
 - Two molecules of acetylcholine attached head-to-head
 - Binds at same receptor as acetylcholine
 - Ion gates remain open
 - Muscle cell cannot reestablish its electrical potential and cannot generate further contractions
 - Acts to depolarize muscle cell membrane and prevent repolarization
 - Rapid onset of paralysis
 - Short effective duration of 5 min
RSI Pharmacology

♥ Paralytic drugs
 ➢ Depolarizing paralytics
 • Succinylcholine side effects:
 ➢ Release potassium in blood, can lead to sudden cardiac arrest from arrhythmia
 ➢ Susceptible patients include major burns, neuromuscular disease, myopathic disease, kidney dialysis or failure, crush injuries
 ➢ Malignant hyperthermia

♥ Paralytic drugs
 ➢ Depolarizing paralytics
 • Succinylcholine side effects:
 ➢ Intragastric pressure
 ➢ Increased ocular pressure
 ➢ Increased ICP
 ➢ Masseter spasm
 ➢ Severe bradycardia in children

♥ Paralytic drugs
 ➢ Nondepolarizing paralytics
 • Act to bind preferentially to acetylcholine receptor site
 • Prevents binding of acetylcholine and ion flow into the cell
 • Prevents muscle contraction
 • Mivacurium (Mivacron)
 ➢ Not available in the United States
 • Rocuronium (Zemuron)
 ➢ Rapid onset and short duration of 15 to 30 min
RSI Pharmacology

- Paralytic drugs
 - Nondepolarizing paralytics
 - Vecuronium (Norcuron)
 - Reliable combination of rapid onset, intermediate duration, and reasonable cost
 - Intermediate-acting
 - Induces muscle paralysis by blocking receptors for acetylcholine
 - Prevents muscle contraction
 - No negative effects on cardiovascular function
 - Does not lower BP or affect heart rate
 - Primarily metabolized by the liver; has increased duration in patients with liver disease
 - Onset of action is slower than SUX and duration of action is significantly longer
 - Typically used to maintain neuromuscular paralysis after patient has been intubated with SUX
 - Atracurium (Tracrium)
 - Pancuronium (Pavulon)
 - Long-acting agent
RSI Pharmacology

- Paralytic drugs
 - Must preoxygenate patient
 - Nonrebreather mask at 100% O₂ concentration for 5 min before RSI
 - If patient is able to cooperate, he or she can take four maximal tidal breaths while breathing 100% O₂
 - Can sustain up to 6 min of complete apnea without O₂ saturation dropping below 90%

RSI Pharmacology

- Paralytic drugs
 - Methods for decreasing onset time for vecuronium
 - Priming
 - Administering 1/10 of paralyzing dose 2 to 3 min before administration of full dose initiates blockade of some of the receptors
 - Shortens time of onset by 1 to 1.5 min

RSI Pharmacology

- Paralytic drugs
 - Methods for decreasing onset time for vecuronium
 - Increase paralyzing dose
 - Can extend effective paralysis 90+ min
 - Increases patient vulnerability if intubation was unsuccessful
RSI Pharmacology

- Paralytic drugs
 - Methods for decreasing onset time for vecuronium
 - Timing
 - Sedating agent is withheld until paralysis is about to take effect
 - Sedating agent takes effect as paralysis ensues
 - Maximal sedation is achieved at same time as maximal paralysis
 - Difficult to use in prehospital environment

RSI Pharmacology

- Deep sedation drugs
 - When used with paralytics, improves intubation success rate
 - Protects brain and heart from dangerous fluctuations in BP and heart rate
 - Prevents patient from being paralyzed while awake

RSI Pharmacology

- Deep sedation drugs
 - Midazolam (Versed)
 - Benzodiazepine
 - Anticonvulsant properties
 - Sedative properties
 - Ability to induce amnesia for events after administration
 - Causes slight decrease in ICP
 - Does not blunt increase in pressure that results from laryngoscopy or intubation
Deep sedation drugs

- **Midazolam (Versed)**
 - Causes decrease in vascular resistance from vascular smooth muscle relaxation
 - Should be used cautiously in patients with multiple trauma
 - Has no analgesic effects
 - Can cause respiratory depression
 - Advocated as a single agent to facilitate intubation in patients with barriers to intubation
 - Possible underdose due to concerns for hypotension

- **Flumazenil (Romazicon)**
 - Reverses effects of midazolam
 - Use with caution in people who regularly take benzodiazepines
 - Can produce withdrawal seizures and complicate airway

- **Etomidate**
 - Not related to benzodiazepines, narcotics, or barbiturates
 - Rapid onset of 30 sec
 - Short duration of 3 to 5 min
 - Minimal effects on the heart and blood vessels
 - Lowers ICP and preserves cerebral and heart perfusion
 - Does not cause hypotension or worsen shock states
Deep sedation drugs

- Etomidate
 - Agent of choice for multiple trauma
 - Be prepared to resectate or administer longer-acting sedation after successful intubation
 - Causes burning pain on injection
 - Dose-related suppression of adrenal function

- Ketamine
 - Dissociative anesthetic
 - Induces intense sedation, analgesia, and amnesia
 - Protective airway reflexes are preserved
 - No significant respiratory depression
 - Apnea is rare
 - Causes modest increase in BP and heart rate
 - Can increase myocardial O₂ demands
 - Should not be used in patients with acute coronary syndromes or MI
 - Offers protection against arrhythmias precipitated by epinephrine
 - Works well in patients with hypovolemia
 - Potent bronchodilator
 - Causes rise in ICP, should not be used if potential for increased ICP exists
 - Has excellent safety record
Deep sedation drugs

- Ketamine
 - Onset is less than 1 min
 - Duration is 15 to 20 min
 - Can be given IM
 - Onset delayed to 3 to 5 min
 - Duration is 1 hour

Adverse side effects:
- Laryngospasm
- Increased bronchial secretions
- Dysphoric emergence from sedation

Preparations (time greater than or equal to 5 min)

- Patient is attached to pulse oximeter, ECG monitor, and end-tidal CO₂ monitor
- Medications are chosen after considering patient condition and contraindications
- Intubation and suction equipment are readied
 - Combitube
 - Manual jet ventilator
- Ensure O₂ is connected and flowing at maximal rate
- PPE
RSI Procedure

- **Preoxygenation (time = t-5 min)**
 - Patient is placed on tight-fitting 100% nonrebreather face mask for 5 min
 - Attempt to wash out any excess nitrogen from pulmonary alveoli
 - Provides reservoir of O₂ to enable tolerance of apneic period
 - Avoid ventilating with positive pressure unless O₂ saturation less than 95%
 - If patient is alert, coach him to take eight maximal breaths

RSI Procedure

- **Pretreatment/priming (time = t-3 min)**
 - If using succinylcholine, administer 1/10 of paralyzing dose
 - Ensure equipment is ready in event of premature paralysis
 - Consider pretreatment with lidocaine
 - Manipulation of the larynx causes both reflex elevation of ICP and secretion of catecholamines
 - Can cause decreased blood flow to the brain and increased stress on cardiac O₂ consumption

RSI Procedure

- **Paralytic/sedation (time = t-1 min)**
 - Administer sedation agent followed immediately by paralytic agent
 - Allow for adequate relaxation before attempting to intubate
 - In some cases, you can administer sedation, maintain spontaneous breathing, assess ability to visualize laryngeal opening, then follow with full paralysis and intubation
RSI Procedure

- Protection (time = t-1 min)
 - From point of sedation and paralytic agent administration until ET position is confirmed, apply Sellick maneuver

RSI Procedure

- Pass the tube (time = 0)
- Prove it (time = t+)
 - Confirm tube position
 - End-tidal CO₂ detectors
 - Esophageal detector devices
 - Clinical assessment

Questions?