Learning Objectives

- Define total body water (TBW) and its two main compartments (intracellular fluid and extracellular fluid)
- Define osmosis and explain difference between isotonic, hypotonic, and hypertonic fluids in terms of osmotic pressure

Learning Objectives

- Discuss colloid solutions used in intravenous therapy: albumin and hetastarch (Hespan)
- Define hypertonic saline solutions
- Discuss electrolyte solutions used in intravenous (IV) therapy: calcium gluconate, sodium bicarbonate, insulin, and 5% dextrose
Learning Objectives

- Define drop factor, microdrip chambers, and macrodrip chambers
- List and discuss various appropriate sites for IV line insertion

Learning Objectives

- Demonstrate proper procedures for:
 - IV insertion
 - IV push
 - IV piggyback
 - IV infusion
 - Intraosseous infusion
- List complications of IV infiltration, catheter shear, and phlebitis

Introduction

- IV lines are inserted to administer IV fluids and provide access for rapid delivery of emergency medications
- Various types of IV fluids are used
- Human body is divided into 2 compartments
 - Intracellular fluid
 - Extracellular fluid
Introduction

- Dehydration
 - Loss of water from fluid space inside cells
 - As cell dehydrates, it begins to malfunction
 - Conditions that quickly develop should be quickly corrected, and conditions that develop slowly should be corrected slowly
 - When patient is evaluated at the hospital, physician calculates the patient’s free water deficit
 - Purpose of prehospital care is to start rehydrating patient

Body Fluid Compartments

- Most of the human body is composed of water
 - In adults, 45% to 65% of the body
 - In average man weighing 80 kg = 48 L

- Total body water (TBW)
 - Total amount of water in the body
 - Intracellular fluid (ICF)
 - Found inside cells
 - Extracellular fluid (ECF)
 - Found between cells and inside blood vessels
 - 2/3 of TBW is in the ICF, 1/3 in the ECF
 - Of the ECF, ¼ is found in interstitial fluid, ¼ in blood vessels
Body Fluid Compartments

- TBW
- Interstitial fluid
 - Space outside vascular space that is between cells
 - Example:
 - Blood vessels are pipes running alongside a brick wall
 - Volume inside pipes is intravascular space
 - Bricks are cells of the body
 - Volume of bricks is the intracellular volume
 - Mortar between bricks is the interstitial space
 - Mortar and volume of pipes both comprise the ECF
Body Fluid Compartments

- Water is able to move freely from one compartment to the other
 - Compartments are separated by membranes that water can move freely across
 - Concentration of particles in the body compartment drives movement of fluids

- Particles can be dissolved in salt or body protein
 - Cannot pass across membranes separating body compartments
 - Key particle: the electrolyte sodium
 - Particles that cannot pass freely across a membrane act as magnets for fluid
 - Osmosis
 - When particles are trapped on one side of a membrane that is permeable to water, water will move toward the higher concentration of particles
Body Fluid Compartments

- When "water" (D5W), which is free of any particles, is added to one compartment, it is freely distributed to various body fluid compartments in proportion to their % of TBW.
 - Example: If 1000 mL of water is administered as an IV bolus, it will be distributed as:
 - ICF (2/3 of TBW) = 666 mL
 - ECF (1/3 of TBW) = 333 mL
 - Extracellular fluid (3/4 of ECF) = 250 mL
 - Intravascular fluid (1/4 of ECF) = 83 mL

Body Fluid Compartments

- Large volume of distribution
 - IV fluid that distributes throughout several body compartments
 - Improves patient's intravascular and extravascular volume
 - IV fluids must get to the intended site of action to achieve desired effect
 - If intention is to increase intravascular volume, you must choose fluid that provides maximal expansion of intravascular space
Body Fluid Compartments

- Large volume of distribution
 - When treatment goal is fluid resuscitation, a smaller volume of distribution is more efficient
 - By decreasing distribution volume, a greater proportion of fluid remains in vascular space
 - Infusion of fluids containing particles reduces distribution volume
 - Limiting movement of particles limits volume of distribution
 - More fluid remains in vascular space

- Isotonic fluids
 - Have same sodium concentration as body water
 - Normal saline and Ringer lactate solution
 - Salt and electrolytes serve as particles
 - Their sodium concentration approximates that of extracellular space
 - Intracellular space is excluded

Extracellular fluid (ECF):
- 2/3 total body water (TBW) = 1000 mL
- Intravascular fluid = 1/3 of the ECF = 333 mL
- Interstitial fluid = 2/3 of the ECF = 667 mL

Intracellular fluid (ICF):
- 1/3 TBW = 333 mL
- Salt particles cannot exceed 10 mL
Predicting distribution of various types of IV fluids is possible to determine optimal fluid to administer.

Example: patient is dehydrated and has depleted intravascular volume.

- The fluid this patient receives should provide some expansion of intravascular volume and fluid in intracellular space.
- Good choice of IV fluid would be 0.45% normal saline.
 - Replaces fluid in vascular space.
 - Not much fluid in intracellular space.

Volume expansion

- Intravascular volume is often depleted by illness/injury.
 - Restoration required to reestablish perfusion to vital organs and tissues.
- Decreased volume results in decreased cardiac output.
 - Results in decreased \(O_2 \) delivery.
 - Patient needs fluid that maximally expands intravascular volume.

For any amount of blood loss, at least 3x amount of crystalloid is required to increase intravascular volume to compensate.

- Large volume of distribution of IV fluids causes fluids to shift/leak out of vascular space to interstitial and intracellular spaces.
- For large amounts of blood loss that produce symptoms of hypovolemia, amount of required volume replacement is beyond that of most EMS protocols.
Body Fluid Compartments

- After period of blood loss, body responds by attempting to autoresuscitate
 - Shift fluid from both intracellular space and interstitial space into intravascular space
 - Cells can become dehydrated and malfunction
 - Acute blood loss: intravascular fluid replacement needs to occur within minutes to prevent multiple organ failure
 - Excessive resuscitation can result in edema and pulmonary complications

Body Fluid Compartments

- Crystalloids
 - IV fluids in which sodium is primary particle that controls volume distribution
 - Most common: Ringer lactate solution and normal saline
 - Movement of water through fluid compartments is controlled by osmosis
 - Trapped particles do not attract the movement of water

Body Fluid Compartments

- Crystalloids
 - Water moves from compartment of lower concentration to compartment of higher concentration
 - As water moves into compartment, concentration of trapped particles decreases
 - Diluted by newly added water
Body Fluid Compartments

- **Crystalloids**
 - Water continues to move down concentration gradient until a difference in concentration between two compartments no longer exists
 - Particles in solution that attract water and exert osmotic pressure are sodium and serum proteins (albumin)

Body Fluid Compartments

- **Crystalloids**
 - **Isotonic**
 - Fluids that have = osmotic pressure with body under normal conditions
 - Contain sodium and other electrolytes that closely mimic concentration of ECF
 - **Hypotonic**
 - **Hypertonic**
 - Crystalloid solutions use electrolytes to provide osmotic pressure

Body Fluid Compartments

- **Colloid solutions use complex molecules for osmotic pressure**
 - Proteins
 - Complex sugars
Body Fluid Compartments

- Hypovolemia
 - Causes:
 - Bleeding
 - Burns
 - Vomiting
 - Diarrhea
 - Diabetic ketoacidosis
 - Bowel obstruction

Healthy individual has capacity to compensate for intravascular volume loss.
- By the time patient shows signs of hypovolemia, assume significant volume loss.
- In case of acute blood loss, a 70-kg patient will lose more than 30% of blood volume before exhibiting hypotension.

Delivery of IV Fluids

- Rapid fluid losses require rapid replacement
 - Typical fluid bolus in adult = 1000 mL (1 L) administered in a 15- to 60-min period
 - Typical fluid bolus in a child = 10 to 20 mL/kg
 - For rapid fluid administration in adult, use two large-bore IV catheters, either 14 or 16 gauge
 - Size of catheter has profound effect on rate at which IV fluids can be given
Delivery of IV Fluids

- Colloid solutions
 - Contain large molecules that have preference for vascular space
 - 3:1 rule
 - Paramedics should administer 3x the volume of crystalloid for a given loss of blood volume
 - Underestimates extravascular fluid shifts

Delivery of IV Fluids

- Colloids and hypertonic fluids provide greater volume expansion with less fluid administered
 - Albumin can expand intravascular volume by 80% of infused volume
 - Under normal conditions, 30% to 40% is in intravascular space
 - 50% to 60% is in interstitial space
 - Intravascular half-life: 16 hours
 - 2 hours after infusion, 90% remains in intravascular space
 - Capable of recruiting water into intravascular space

Delivery of IV Fluids

- Colloids and hypertonic fluids provide greater volume expansion with less fluid administered
 - Hetastarch can increase intravascular volume by 100% of infused volume
 - After 36 hours, 33% of infused volume remains in intravascular space
Delivery of IV Fluids

- Hypertonic saline solutions
 - Have concentration greater than isotonic concentration of 0.9%
 - Typical solutions are 3%, 5%, or 7% saline
 * 3 to 5x higher sodium concentration than standard normal saline
 * Higher concentration of sodium pulls more volume into vascular space
 * Some solutions use particles other than sodium to make hypertonic fluid

Delivery of IV Fluids

- Electrolytes
 - Paramedics must treat electrolyte disorders that have clinical manifestations
 - Most electrolyte disorders are not immediately life threatening and can wait for lab test confirmation, except hyperkalemia

Delivery of IV Fluids

- Electrolytes
 - Hyperkalemia
 * May occur with renal failure
 * Presenting symptoms include:
 - GI symptoms of nausea, abdominal pain, diarrhea
 - Initially peaked T waves
 - Widening of QRS complex
 - Depression of ST segment
Delivery of IV Fluids

- Electrolytes
 - Hyperkalemia
 - Causes:
 - Burns
 - Crush injuries
 - Diabetic ketoacidosis
 - Severe infections
 - Left untreated, can progress to heart block and cardiac arrest
 - Treatment objectives:
 - Protect heart from effects of hyperkalemia
 - Hide potassium inside cells
 - Administer 1 g 10% calcium gluconate
 - Does not alter serum level of potassium
 - To hide potassium, must be shifted from extracellular space into intracellular space
 - Administer sodium bicarbonate, 50% dextrose, and insulin
 - Sodium bicarbonate rapidly shifts potassium into cells within minutes of administration and lasts up to 12 hours
 - Insulin (10 U regular insulin) allows additional potassium to be hidden inside cells
 - Dextrose (2.5 g) is given with insulin to prevent hypoglycemia
Delivery of IV Fluids

- Electrolytes
 - Hypokalemia
 - Low serum concentration of potassium
 - Cannot diagnose without lab blood test
 - Result of chronic medical conditions:
 - Reduced dietary intake of potassium
 - Chronic diuretic therapy
 - Diarrhea
 - Short bowel syndrome
 - Vomiting
 - Burns

Delivery of IV Fluids

- Electrolytes
 - Hypokalemia
 - Paramedics must rely on symptoms
 - Muscle weakness
 - Abdominal distention
 - Constipation
 - T waves tend to flatten and progress to AV block and cardiac arrest

Delivery of IV Fluids

- Electrolytes
 - Hypokalemia
 - Potassium infusion in the field is unlikely
 - May transport patient from one facility to another who is receiving a potassium infusion
 - Potassium in chronic and nonemergent conditions is provided with oral supplements
Delivery of IV Fluids

- Electrolytes
 - Hypokalemia
 - IV potassium administration is potentially dangerous
 - Too-vigorous replacement leads to hyperkalemia
 - Should always be diluted and slowly administered
 - Administered only to patients with adequate renal function and good urine output
 - Should not be administered to dehydrated patients
 - IV fluids with supplemental potassium should not contain more than 40 mEq/L of potassium
 - Rate of administration should not exceed 20 mEq/hr

- Other common electrolyte disorders:
 - Hypocalcemia
 - Hypercalcemia
 - Hypomagnesemia
 - Hypermagnesemia
 - Hypophosphatemia
 - Hyperphosphatemia
 - Paramedics rarely treat any of these conditions without lab blood tests

IV Therapy: Equipment and Administration

- Starting IV lines requires practice and patience

- Equipment
 - PPE: eye protection and gloves
 - Catheters
 - Composed of hub and catheter shaft
 - Have plastic catheter that fits over needle
IV Therapy: Equipment and Administration

- **Administration sets**
 - IV fluid bag
 - Drip chamber
 - Roller clamp
 - Administration port

- **Drip chamber**
 - Compartment immediately below IV bag where IV fluid drips at predetermined volume
 - Can control volume and rate of administration
 - Allow provider to count number of drops over period and calculate rate of fluid

- **Drop factor**
 - Number of drops into chamber required to administer 1 mL of fluid
 - Microdrip
 - Administer 60 gtt/mL
 - Number of drops counted per minute = rate of infusion in mL/hour
 - Used with adrenergic agents and cardiac antiarrhythmics
 - Used with children sensitive to large amounts of IV fluids
IV Therapy:
Equipment and Administration

- Administration sets
 - Drip chamber
 - Macro-drip
 - Variety of sizes
 - Drip factors of 10, 12, 15, and 20 gtt/mL

- Administration sets
 - Drip chamber
 - Volume-control chambers
 - Used to control amount of fluids delivered (see Fig. 5-7)
 - Can be inserted between drip chamber and IV bag
 - Can set maximal amount of fluid to be infused by filling chamber from IV
 - Once emptied, patient cannot receive any more fluid

IV Therapy:
Equipment and Administration

- Administration sets
 - Drip chamber
 - Macro-drip
 - Variety of sizes
 - Drip factors of 10, 12, 15, and 20 gtt/mL
IV Therapy: Equipment and Administration

- Administration sets
 - Y-tubing
 - Used in patients who require volume expansion and possibly transfusion of blood products
 - For trauma patient, start IV line with Y-tubing and hang normal saline
 - Transfusion of blood can be started as soon as blood is available

- IV Therapy: Equipment and Administration
 - IV fluids infused without an infusion pump use force of gravity
 - Must be frequently verified as flowing at intended rate
 - Factors affecting drip rate:
 - Height of IV bag
 - Position of extremity with IV
 - Coiling of IV tubing

- Indication for starting IV line determines rate of fluid administration
 - Serves as vehicle to allow rapid administration of medications as patient's condition dictates
 - Fluid rate is often referred to as TKO (to keep open) or KVO (keep vein open)
 - KVO rate
 - Can be achieved with a microdrip set running at 30 to 50 gtt/min
 - Failure to infuse some fluids slowly can result in the IV line clotting
IV Therapy: Equipment and Administration

■ Trauma
 ▶ IVs are started for rapid administration of fluids or blood to expand intravascular volume
 ▶ Running fluids wide open means opening roller clamp all the way
 ▶ To increase rate of delivery, paramedic can place IV bag in pressure bag or have someone manually squeeze bag of fluids

IV Therapy: Equipment and Administration

■ Trauma
 ▶ Rate that fluid can flow through a tube is determined by laws of physics:
 • \(\frac{(\text{Change in pressure}) \times \text{radius}^4}{\text{length of the catheter}} \)
 ▶ Increasing change in pressure by increasing height of bag, adding a pressure bag, or manually squeezing increases rate of delivery
 ▶ Increasing length of tubing by adding tubing actually decreases rate

IV Therapy: Equipment and Administration

■ In helicopters and mobile intensive care units, paramedics may encounter a variety of infusion pumps
 ▶ Advantages
 • Able to directly enter rate of infusion
 • Allows entry of patient’s weight and desired dose of medication
 • Allows user to set a volume to be delivered, and will stop infusion after delivery
Site selection and preparation

- Most commonly inserted in veins of hands and arms
- With trauma or shock, place in larger vein of antecubital fossa
- In less critical cases, choose most distal aspect of extremity

- Avoid starting IV in dominant hand or injured extremity
- Avoid IVs in lower extremities of adults
- In children, insertion into dorsal aspect of foot or scalp is common
- Alcohol or povidone iodine is most commonly used to prepare site
IV Therapy: Equipment and Administration

• Procedures
 ➢ IV assembly
 • Equipment needed:
 ➢ IV solution
 ➢ IV tubing

• Procedure:
 ➢ Observe universal precautions
 ➢ When possible, explain to patient what procedure you are performing and why
 ➢ Select appropriate fluid
 ➢ Remove cover from both IV part of IV bag of fluids and spike on IV tubing drip chamber

• Procedure:
 ➢ Insert spike of tubing drip chamber into IV tubing part of bag
 ➢ Open roller clamp on IV tubing to flush IV fluid though tubing
 ➢ After tubing has been flushed, disese roller clamp or set fluid infusion rate as prescribed
IV Therapy: Equipment and Administration

Procedures
- IV assembly with volume control (volutrol)
 - Equipment needed:
 - IV solution
 - IV tubing with volutrol

Procedure:
- Observe universal precautions
- Confirm patient has no allergies to medication
- When possible, explain to patient what procedure you are performing and why
- Select appropriate IV fluid and spike bag in same way you would for a regular IV
- Connect and hang the drip set
- Open flow clamp above chamber
- Cannulate the vein, connect IV tubing, and set drip rate by using flow regulation clamp below volume chamber
- Monitor fluid in chamber at all times
IV Therapy: Equipment and Administration

- Procedures
 - IV assembly with volutrol
 - Procedure:
 - When volume regulation chamber is almost empty, reassess patient’s condition and lung fields to determine whether procedure should be continued as premeasured infusion or in TKO format.
 - Document medication, dose, route, needle size, and time in the PDR.
 - Evaluate patient for desired effects of medication and any adverse effects.

- Procedures
 - Peripheral IV access
 - Equipment needed:
 - Alcohol or povidone-iodine (Betadine) prep
 - Tourniquet
 - IV catheter
 - IV tubing
 - IV solution
 - Adhesive tape or dressing to secure IV line
 - Sharps
 - PPE

- Procedures
 - Peripheral IV access
 - Procedure:
 - Observe universal precautions.
 - Confirm patient has no allergies to medication.
 - When possible, explain what procedure you are performing and why.
 - Position patient to stabilize extremity where IV is to be inserted with pillows or cot that is easily accessible.
IV Therapy: Equipment and Administration

Procedures

- **Peripheral IV access**
 - **Procedure:**
 - Ensure all IV tubing and equipment are assembled and flushed, and all materials required for securing and dressing the catheter are immediately available
 - Determine location for IV catheter placement
 - Apply tourniquet several inches proximal to proposed IV site
 - Prepare area

- **Procedure:**
 - Hold needle in your dominant hand at a 30° angle, with needle bevel up
 - Insert needle through skin approximately ½ to 1 inch distal to site where it will enter vein
 - As you slowly advance needle through the skin, reduce angle to approximately 15° while advancing through soft tissues into the vein
 - Once needle has entered into the vein, blood will flow back into hub of the needle

- **Procedure:**
 - While securing catheter with one hand, release tourniquet and connect hub of the catheter to preassembled tubing set
 - Secure catheter in place with tape or adhesive dressings
 - Document medication, dose, route, needle size, and time in the PCR
 - Evaluate patient for desired effects of medication and any adverse effects
IV Therapy: Equipment and Administration

Procedures

- After IV line has been established, providers can deliver medications directly into circulatory system
- IV push
 - Involves using syringe connected to injection port of IV line
 - Rapidly administers medications
 - Slowly empty syringe over period of several minutes

Procedures

- Injection ports
 - Areas placed along IV tubing where provider can inject contents of a syringe into IV line
- Preloaded syringe
 - Must assemble syringe by removing yellow caps on the ends of the two pieces, then screwing the two pieces together

Procedures

- Prefilled tubes
 - Glass syringes or tubes that are rapidly screwed in a plastic or metal tube
- Medications not supplied in preloaded syringes are provided in vials or ampules
 - Must transfer medication into a syringe
 - Vials
 - Ampules
IV Therapy: Equipment and Administration

Procedures
- Withdrawing medication from a vial
 - Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm patient has no allergies to medication
 - When possible, explain what procedure you are performing and why

- Procedure:
 - Peel back aluminum lid of vial to expose rubber diaphragm
 - Wipe rubber diaphragm with an alcohol wipe
 - Fill syringe with volume of air equal to amount of medication desired
 - With bevel of the needle facing you, insert needle into the vial and inject air from syringe
 - Load medication from vial into syringe
 - When withdrawing medication from vial for use by IM or Sub-Q routes, place new needle on syringe before administering medication
IV Therapy: Equipment and Administration

- Procedures
 - Assembly of a preloaded syringe
 - Equipment needed:
 - Medication in preloaded syringe
 - Sharps
 - Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm patient has no allergies to medication
 - When possible, explain what procedure you are performing and why
 - Procedure:
 - Calculate volume of medication to be administered
 - Remove protective cap from barrel and cartridge
 - Screw cartridge into barrel
 - Push in plunger to expel air
IV Therapy:
Equipment and Administration

Procedures

- Withdrawing medication from an ampule
 - Equipment needed:
 - Ampule of medication
 - 2 pieces of 4 x 4 gauze
 - Syringe
 - Filtered needle for drawing medication into the syringe
 - Needle for injection
 - Sharps

- Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm patient has no allergies to medication
 - When possible, explain what procedure you are performing and why
 - Shift all medication into lower portion of ampule by tapping the top half of ampule
 - Hold ampula between your hands by wrapping it with two pieces of gauze
 - In one hand, hold top of ampule in a piece of gauze
 - With other hand, hold lower portion of glass ampule
 - Break top off ampula by bending it away from you
 - Use a filtered needle to draw medication into the syringe to prevent any glass shards from being drawn up
IV Therapy: Equipment and Administration

- Procedures
 - IV drug administration
 - Equipment needed:
 - Alcohol prep
 - Medication loaded in a syringe
 - Needle for the syringe
 - Sharps
 - PPE
 - Procedure
 - Observe universal precautions
 - Verify drug order
 - Confirm patient has no allergies to medication
 - When possible, explain what procedure you are performing and why
 - Locate medication port of IV line and wipe it clean with alcohol
 - Clamp or pinch IV tubing above site of medication port
 - Insert needle of syringe through diaphragm of medication port
 - Gently pull back plunger on syringe until you see small flow of blood in IV tubing
IV Therapy: Equipment and Administration

Procedures

- **IV drug administration**
 - **Procedure**
 - Inject medication into IV line at rate appropriate for medication.
 - Once all medication has been injected, remove needle from medication port, uncapse IV tubing, and dispose the needle and syringe into sharps container.
 - Document medication, dose, route, needle size, and time in the PCR.
 - Evaluate patient for desired effects of medication and any adverse effects.

- **IV piggyback**
 - Secondary infusions attached to primary infusion line.
 - Medication is added to smaller bag of IV fluid and slowly infused through medication port of main IV line.
 - Many IV medications are administered during projected period of 30 minutes to hours.
 - Smaller IV bag containing medication is then connected by injector port into main IV line.

- **IV infusion (piggyback)**
 - **Equipment**
 - Alcohol prep
 - Medication
 - Syringe
 - Needle
 - Small bag of compatible IV fluids (100 or 250 mL)
 - IV tubing
 - Medication label
 - Sharps
IV Therapy: Equipment and Administration

Procedures

- IV infusion (piggyback)
 - Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm patient has no allergies to medication
 - When possible, explain what procedure you are performing and why

- To prepare medication, draw it into a syringe by techniques previously explained
- Wipe injection port of smaller bag of IV fluids being used for piggyback infusion with alcohol
- Inject medication into IV bag
- Mix solution by shaking IV bag

- Label bag with medication label
- Document medication, dose, route, needle size, and time in the PCR
- Evaluate patient for desired effects of medication and any adverse effects
IV Therapy: Equipment and Administration

- Procedures
 - Attaching infusion solution to primary IV line
 - Equipment needed:
 - Alcohol prep
 - Medication
 - Syringe
 - Needle
 - Small bag of compatible IV fluids
 - IV tubing
 - Medication label
 - Sharps

- Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm patient has no allergies to medication
 - When possible, explain what procedure you are performing and why

 - Wipe clean the medication port of IV line with alcohol
 - Clamp IV tubing of primary line
 - Place needle of line containing piggyback medication through diaphragm of medication port above site of medication port
 - Infuse medication into primary IV line at rate appropriate for particular medication
IV Therapy: Equipment and Administration

- Procedures
 - Attaching infusion solution to primary IV line
 - Procedure:
 - Hang smaller IV bag containing medication given by piggyback infusion at level higher than bag used for primary IV infusion
 - Once infusion of medication is complete, remove piggyback infusion and unclamp tubing of primary IV line
 - Document medication, dose, route, needle size, and time in the PCR
 - Evaluate patient for desired effects of medication and any adverse effects

- Procedures
 - Intraosseous (IO) infusions
 - Placement of needle set into highly vascular intramedullary space of bone and infusion of fluids or medications into this space
 - In cases of hypovolemic shock, veins often collapse, making access with IV catheters difficult or impossible
 - Fluids, blood, and medications administered through an IO line can be delivered to central circulation by this route as rapidly as through peripheral or central venous catheters
IV Therapy: Equipment and Administration

- Procedures
 - IO infusions
 - Most common site: proximal tibia
 - Flat nature and lack of extensive overlying muscle and soft tissue
 - To locate, palpate proximal tibia immediately below knee and feel for marked bump in the bone
 - Medial to tibial tuberosity on anteromedial portion of the bone
 - Avoid placing needle in an injured extremity

- Devices used to gain access
 - Jamshidi intraosseous needle is most widely used
 - Some use manual application
 - Some use spring-loaded devices
 - Electrical drills
 - EZ-IO device
IV Therapy: Equipment and Administration

- Procedures
 - IO infusions
 - In adults, sternum is occasionally used as IO infusion site
 - Thin and flat
 - Contains high proportion of red marrow
 - Easy to penetrate
 - Less likely to be fractured
 - Close to central circulation
 - Recommended insertion site is manubrium, 1.6 cm below sterna notch
 - Must use specifically designed device for sterna applications

- IO infusion: tibial approach
 - Equipment needed:
 - Alcohol or chlorhexidine prep
 - IO needle set
 - 10-mL syringe
 - IV tubing
 - Bag of IV compatible fluids
 - Several rolls of gauze
 - Tape
 - Sharps
 - PPE
IV Therapy:
Equipment and Administration

Procedures
- IO infusion: tibial approach
 - Procedure:
 - Observe universal precautions
 - Verify drug order
 - Confirm patient has no allergies to medication
 - When possible, explain what procedure you are performing and why

- Identify site of insertion
- Prepare insertion site with either alcohol or chlorhexidine
- Make sure that angle of needle set insertion is 90° to the bone
- Advance needle set with back-and-forth screwing motion
- Confirm proper placement of the catheter

- Attach preassembled administration set to IO catheter
- Secure IO line in place with bulky dressings
- Document medication, dose, route, needle size, and time in the PCR
- Evaluate patient for desired effects of medication and any adverse effects
IV Therapy: Equipment and Administration

- Procedures
 - IO infusion: sterna approach for FAST1 IO infusion system
 - Equipment needed:
 - Alcohol or povidine-iodione prep
 - IO needle
 - 10-mL syringe
 - IV tubing
 - Bag of IV compatible fluids
 - Several rills of gauze
 - Tape
 - Sharps
 - PPE

- Procedure:
 - Locate patient’s manubrium and prepare the site with aseptic solution
 - Use index finger to align target patch with patient’s sternal notch
 - Place target patch
 - Place introducer into target zone on patch, perpendicular to the skin
 - Firmly push on introducer to insert infusion tube into correct site and to right penetration depth
IV Therapy: Equipment and Administration

• Procedures
 ➢ IO infusion: sterna approach for FAST1 IO infusion system
 Procedure:
 ➢ Pull introducer straight back, exposing infusion tube and two-part support sleeve, which falls away
 ➢ Verify correct placement by observing marrow entering infusion tube
 ➢ Connect IV solution and tubing to infusion tube on patch, and adjust flow rate

• Procedures
 ➢ IO infusion: sterna approach for FAST1 IO infusion system
 Procedure:
 ➢ Place protective dome over site by pressing firmly over target patch to engage Velcro fastening
 ➢ Document medication, dose, route, needle size, and time in the PCR
 ➢ Evaluate patient for desired effects of medication and any adverse effects

IV Therapy: Equipment and Administration

• Complication of IV therapy
 ➢ IV therapy has potential complications
 • Infiltration
 ➢ Occurs when tip of the catheter dislodges from lumen of the vein
 ➢ Fluid then delivered to soft tissues around vein
 ➢ Can result in tissue destruction and necrosis at site of infiltration
 ➢ Signs: fluid no longer freely drips, pain and swelling at the IV site
IV Therapy: Equipment and Administration

- Complication of IV therapy
 - IV therapy has potential complications
 - Infiltration
 - Treatment: discontinue IV, start new IV either proximal to infiltration or in another extremity
 - Hand and foot infiltration can cause damage to underlying and adjacent structures
 - Elevate affected area
 - Examine vascular, motor, and sensory function
 - If medication infiltration is suspected, immediately report to medical direction

- Complication of IV therapy
 - Catheter shear
 - Occurs when segment of catheter breaks off
 - Is either retained in vein or embolizes through venous system
 - Can occur when provider tries to pull catheter back over needle
 - Typically when blood return appears while starting an IV
 - Severed catheter can float away in vein to site more proximal in limb or heart and lungs
 - Can require retrieval by surgery or angiography

- Complication of IV therapy
 - Phlebitis
 - Inflammation of the vein
 - Manifests as pain, redness, edema
 - Thrombophlebitis
 - Suppurative thrombophlebitis
 - Infection
 - Infected phlebitis
IV Therapy: Equipment and Administration

Questions?