Chapter 9
Cardiac Arrhythmias

Learning Objectives

- Define electrical therapy
- Explain why electrical therapy is preferred initial therapy over drug administration for cardiac arrest and some arrhythmias
- Discuss medications used to treat symptomatic bradycardia: atropine sulfate, epinephrine, and dopamine

Learning Objectives

- Discuss adenosine (Adenocard) and its role in treatment of supraventricular tachycardia
- List and discuss three classes of antiarrhythmic agents
Learning Objectives

- Discuss the beta blocker atenolol (Tenormin), anticoagulant warfarin (Coumadin), and calcium channel blockers diltiazem (Cardizem) and verapamil (Isoptin)

- Explain benefits of beta blockers in treatment of arrhythmias

Learning Objectives

- Discuss the following ventricular antiarrhythmic agents:
 - Amiodarone (Cordarone)
 - Lidocaine (Xylocaine)
 - Procainamide (Pronestyl)
 - Magnesium sulfate

- Discuss medications used to treat pulseless electrical activity and asystole: epinephrine and vasopressin

Introduction

- Cardiac arrhythmia
 - Loss of abnormality of cardiac rhythms
 - Chronic atrial fibrillation
 - Cardiac arrest caused by ventricular fibrillation
Basic Electrophysiology

- Heart has four small pumps/chambers
 - Each has millions of cardiac muscle cells
 - Each can contract independently
- For the heart to pump blood effectively, muscle cells and four chambers must coordinate

Basic Electrophysiology

- Muscle cells composing the four chambers must contract at precise moments
 - Coordinated by the heart’s electrical system
- Electrical impulse originates in SA node and travels through heart’s electrical system in a predictable way
 - As it moves through the heart, it signals each portion of the heart to contract in required organized fashion

Basic Electrophysiology

- When electrical impulses coordinating cardiac contraction are too slow, too fast, or irregular:
 - Heart chambers do not contract in an organized fashion
 - Amount of blood pumped by the heart drops
 - BP falls
Overview of Arrhythmias

- Sinus bradycardia
 - Cardiac output (CO) is determined by patient’s heart rate (HR) x amount of blood pumped with each heartbeat (stroke volume [SV])
 - \[CO = HR \times SV \]
 - Decrease in heart rate causes drop in cardiac output
 - Reduced blood flow to brain
 - Dizziness and syncope

Overview of Arrhythmias

- Ventricular fibrillation (VF)
 - Cardiac rhythm when all the cardiac cells are trying to contract independently and not coordinating or communicating with each other
 - Electrical therapy resets the heart
 - Cardiac arrest is usually caused by sudden onset of cardiac arrhythmia
 - VF occurs from chronic myocardial ischemia resulting in electrical instability of the heart
 - Electrical defibrillation cardiac arrest is single best method of treatment
Overview of Arrhythmias

Management

Bradycardia
- Heart rate less than 60 beats/min
- Ensure patent airway
- Provide supplemental O₂
- Monitor cardiac rhythm
- Evaluate O₂ saturation and BP
- Place IV line
- Causes decreased cardiac output

Management

Bradycardia
- Symptoms:
 - Decreased mental status
 - Syncope
 - Hypotension
 - Chest pain
 - Congestive heart failure
 - Dyspnea
 - Seizures
 - Shock
Management

- Bradycardia
 - Treatment
 - Transcutaneous pacing
 - Start external pacing for type II second-degree blocks and third-degree blocks
 - Atropine 0.5 mg IV
 - Epinephrine 2 to 10 mcg/min or dopamine 2 to 10 mcg/kg/min infusions may be used while waiting to start pacing line or if pacing is ineffective
 - Are beta-adrenergic drugs
 - Chronotropic, which results in increased heart rate

Management

- Tachycardia
 - In young patients with SVT, vagal maneuvers and carotid massage can be used to return patient to normal sinus rhythm
 - Carotid massage should never be used in older persons
 - Valsalva maneuver can be used in older persons

Management

- Tachycardia
 - Synchronized cardioversion is indicated if patient is unstable
 - Altered mental status
 - Hypotension
 - Chest pain
Management

- Tachycardia
 - Adenosine (Adenocard) is used for stable patients in SVT
 - Alters movement of potassium in action potential of the heart
 - Creates short period of asystole or ventricular escape beats
 - Only used as antiarrhythmic for SVT
 - Has no effect on ventricular arrhythmias
 - Ultrashort half-life of 5 to 20 sec

Management

- Tachycardia
 - Works only when majority of administered doses reaches the heart quickly
 - Given by rapid IV push, immediately followed by flush solution
 - AHA recommended dose: 6 mg IV, followed by normal saline bolus of 20 mL
 - Extremity should be elevated
 - If SVT does not resolve within 1 to 2 min, dose should be increased to 12 mg and repeated no more than twice
Management

- Antiarrhythmic drugs
 - Calcium channel blockers
 - Block influx of calcium into cardiac cells and arterial smooth muscle cells
 - Slows conduction velocity of cardiac action potential
 - Prolongs period of repolarization
 - Rapid electrical impulses traveling down from atria to ventricles through AV node are slowed

- Calcium channel blockers
 - Cause peripheral arterioles to dilate
 - BP to be monitored closely
 - Clinical applications
 - Useful for controlling and/or converting certain supraventricular arrhythmias
 - Stable, narrow-complex reentry SVT
 - Automatic focus tachycardias not converted or controlled by adenosine or vagal maneuvers

- Do not convert atrial fibrillation or atrial flutter into sinus rhythm
- Used to:
 - Treat hypertension
 - Decrease angina episodes
 - Decrease incidence of migraine headaches
Management

- Antiarrhythmic drugs
 - Calcium channel blockers
 - Various calcium channel blockers have different proportions of vasodilator, antihypertensive, and antiarrhythmic effects
 - Diltiazem (Cardizem)
 - Used for acute ventricular rate control and management of hypertension
 - Verapamil (Isoptin)
 - No longer routinely used for treating arrhythmias
 - Prescribed for BP control or continued rate control in chronic atrial fibrillation
 - Do not administer to patients with heart failure or impaired ventricular function
 - Beta blockers
 - Exert effects on both beta_1 and beta_2 receptors
 - Beta_1 receptors
 - Located in the heart
 - Act as main mediator of rate and contractility
 - Lower BP and O_2 consumption
 - Effects result in lower heart rate, automaticity, and conduction
 - Can dramatically decrease cardiac output
 - Beta_2 blockers prevent vasoconstriction and lower BP
Management

- Antiarrhythmic drugs
 - Beta blockers
 - Highly effective for:
 - Angina
 - Hypertension
 - Decreased mortality rate during and after AMI

- Decrease infarct size
- Reduce risk for recurrent ischemia
- Decrease incidence of sudden death from arrhythmias
- Useful for treatment of dissecting aortic aneurysms
- Can be used as antiarrhythmics, especially in high catecholamine or epinephrine states such as:
 - Alcohol withdrawal
 - Panic attacks
 - Hyperthyroidism

Management

- Antiarrhythmic drugs
 - Beta blockers
 - Control heart rate in SVTs
 - Decrease AV nodal conduction
 - Depress ventricular automaticity
 - May be effective in rate control of atrial fibrillation, SVT, and sinus tachycardia
 - Suppress premature ventricular contractions, especially in patients with angina
Management

- Antiarrhythmic drugs
 - Beta blockers
 - Propranolol (Inderal)
 - Metoprolol (Lopressor)
 - Atenolol (Tenormin)
 - Esmolol (Brevibloc)

Management

- Ventricular antiarrhythmic drugs
 - Divided into classes based on their mechanism of action:
 - Class I
 - Sodium channel blockers
 - Class II
 - Beta blockers
 - Class III
 - Potassium channel blocking agents
 - Class IV
 - Calcium channel blocking agents

Management

- Ventricular antiarrhythmic drugs

 - Amiodarone
 - Only antiarrhythmic drug that has actions from every class of antiarrhythmics
 - Used to treat arrhythmias that originate both above and below AV node
 - Used for cardiac arrest from VF and pulseless ventricular tachycardia
 - Converts acute atrial fibrillation or atrial flutter
Ventricular antiarrhythmic drugs

- Amiodarone
 - Increases duration of action potential
 - Increases refractory period of atria, AV node, and ventricular tissues
 - Reduces risk for developing atrial fibrillation, can convert from atrial fibrillation to sinus rhythm
Management

- Ventricular antiarrhythmic drugs
 - Amiodarone
 * Increasing duration of action potential and refractory period:
 * Specialized tissue that conducts electrical impulses or action potential from SA node through ventricles, past SA node and down into the ventricles
 * The faster the action potential duration, the faster the action potential will move down the conduction system
 * The greater the refractory period, the fewer action potentials will travel down through the heart in 1 min

- Ventricular antiarrhythmic drugs
 - Lidocaine
 * Class 1B antiarrhythmic
 * Blocks sodium channel
 * Decreases amount of time required for repolarization
 * Short-acting anesthetic
 * Converts only about 11% to 12% of cases of VT

- Ventricular antiarrhythmic drugs
 - Procainamide (Pronestyl)
 * Class IA antiarrhythmic
 * Binds to fast sodium channels
 * Slows almost all phases of action potential
 * Slows depolarization, repolarization, and impulse conduction
 * Can prolong PR and QT intervals
Management

- Ventricular antiarrhythmic drugs
 - Procainamide (Pronestyl)
 - At higher doses, can cause QRS complex to widen
 - Can be used for both atrial and ventricular arrhythmias
 - Used as second-line agent of choice for atrial fibrillation, atrial flutter, and SVT
 - Usually drug of choice when amiodarone is not effective
 - Cannot be given rapidly
 - Takes 20 to 40 min to work

Management

- Ventricular antiarrhythmic drugs
 - Magnesium sulfate
 - Electrolyte
 - Extremely effective antiarrhythmic
 - Magnesium is used to treat torsades de pointes
 - Decreases PVC caused by a prolonged QT interval
 - Used in alcoholic and malnourished patients

Management

- Cardiopulmonary arrest
 - Pulseless electrical activity (PEA) and asystole
 - PEA has detectable electrical activity on the monitor but no mechanical cardiac activity
 - Detected by the presence of a pulse or audible heart tones
 - Asystole has no electrical or mechanical cardiac activity
 - Only epinephrine and vasopressin are indicated
Management

- Cardiopulmonary arrest
 - PEA and asystole
 - Epinephrine
 - In arrest: 1 mg IV, IO administered every 3 to 5 min
 - In beta or calcium channel blocker overdose: up to 0.2 mg/kg
 - When cannot establish IV or IO access, administer down ET tube: 2 to 2.5 mg

Management

- Cardiopulmonary arrest
 - PEA and asystole
 - Vasopressin
 - Vasoconstrictor that does not use adrenergic receptors
 - Powerful inotropic and chronotropic
 - Stimulates the heart via different receptor mechanism
 - In cardiac arrest, single dose of 40 units IV or IO

Management

- Cardiopulmonary arrest
 - Pulseless ventricular tachycardia and ventricular fibrillation
 - Epinephrine and vasopressin are indicated
 - Electrical therapy has proven to be most effective treatment of cardiac arrest with these rhythms
 - If patient does not respond to defibrillation, epinephrine or vasopressin, consider amiodarone
 - Lidocaine can be used as substitute
Questions?