Chapter 12
Cardiovascular Emergencies

Learning Objectives
- Define role of EMT in emergency cardiac care system
- Predict relationship between basic life support (BLS) & patient experiencing cardiovascular compromise
- Explain rationale for early defibrillation
- Explain why cardiac arrest does not occur in all patients with chest pain & why all do not need to be attached to an automated external defibrillator (AED)

Learning Objectives
- Discuss role of the American Hospital Association (AHA) in use of AED
- Discuss fundamentals of early defibrillation
- Describe structure & function of the cardiovascular system
- Describe emergency medical care of the patient experiencing chest pain/discomfort

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
Learning Objectives

- Discuss position of comfort for patients with various cardiac emergencies
- Establish the relationship between airway management & cardiovascular compromise
- Recognize need for medical direction of protocols to assist in emergency medical care of patient with chest pain
- List indications for use of nitroglycerin

Learning Objectives

- State contraindications & side effects for use of nitroglycerin
- Explain rationale for giving nitroglycerin to patient with chest pain/discomfort
- Discuss importance of cardiopulmonary resuscitation (CPR)
- Explain why changing EMTs every 2 minutes is important during CPR

Learning Objectives

- Discuss the importance of chest compressions that are hard, fast, & minimally interrupted
- List the steps for 1-rescuer & 2-rescuer CPR for adult, child, & infant victim of cardiac arrest
- Discuss various types of AEDs
- Discuss procedures that must be taken into consideration for standard operation of AEDs
Learning Objectives

- Discuss integration of CPR into other resuscitation procedures
- State reasons for ensuring patient is pulseless & apneic when using AED
- List indications & contraindications and advantages & disadvantages for AED
- Discuss circumstances that may result in inappropriate shocks

Learning Objectives

- Explain considerations for interruption of CPR when using an AED
- Summarize speed of operation of AED
- Discuss use of remote defibrillation through adhesive pads
- Discuss special considerations for rhythm monitoring
- List steps in operation of AED

Learning Objectives

- Explain impact of age & weight on defibrillation
- Differentiate 1-rescuer vs. multi-rescuer care with an AED
- Explain reason for pulses not being checked between shocks with an AED
- Discuss importance of coordinating advanced cardiac life support-trained (ACLS)-trained providers with personnel using AEDs
Learning Objectives

- Discuss importance & list components of postresuscitation care
- Define function of all controls of AED & describe event documentation & battery maintenance
- Discuss standard of care for patient with persistent/recurrent ventricular fibrillation (VF) & no available ACLS
- Explain importance of prehospital ACLS intervention, if available

Learning Objectives

- Explain importance of urgent transport to facility with ACLS if not available in prehospital setting
- Discuss need to complete “Automated defibrillator: operator’s shift” checklist
- Explain importance of frequent practice with AED
- Explain role medical direction plays in use of AED

Learning Objectives

- State why you should complete a case review after use of AED
- Discuss components to include in case review
- Discuss goal of quality improvement (QI) in AED
Introduction

- > 335,000 die in United States from sudden cardiac arrest (SCA) annually
 - Most occur outside hospital
 - SCA may be the first sign of heart disease
 - AHA promotes chain of survival

Chain of Survival

- Early recognition and activation of 9-1-1
- Early CPR
- Rapid defibrillation
- Early Advanced Life support
- Integrated post-resuscitation care

Chain of Survival

- Designed to:
 - Deliver CPR
 - Perfuse brain/heart
 - Provide early defibrillation
 - Prevent subsequent cardiac arrest
 - Provide therapeutic hypothermia and other post-resuscitation care
Chain of Survival

- Most patients with SCA have VF
- Early defibrillation
- Early access
- Early advanced cardiac care

Chain of Survival

- Patients with chest pain/SCA
 - Administer O₂
 - Assist with administration of prescribed nitroglycerine (NTG)
 - Defibrillate, if SCA occurs
 - Request ALS assistance
 - Provide prompt transport
 - Communicate findings to hospital personnel
Chain of Survival

- Major heart disease categories:
 - Ischemic chest pain
 - Heart failure
 - Sudden cardiac death

Anatomy & Physiology

- Circulatory system delivers O₂ & nutrients to tissues; returns waste products to lungs & kidneys
 - Proper functioning depends on:
 - Heart
 - Blood
 - Blood vessels
Anatomy & Physiology

- Heart
 - Generates blood flow to all parts of body
 - Force must be sufficient to open vessels
 - Inner portion divided into:
 - Right atrium
 - Right ventricle
 - Left atrium
 - Left ventricle

Anatomy & Physiology

- Conduction system
 - Specialized tissues that depolarize and transmit impulses, creating rhythmic contraction & relaxation
Anatomy & Physiology

- Heart
 - Cardiac output

\[\text{CO} = \text{SV} \times \text{HR} \]

- Blood vessels
 - Arteries
 - Veins
 - Capillaries

- Major arteries for palpation:
 - Carotid
 - Radial
 - Brachial
 - Femoral
 - Posterior tibial
 - Dorsalis pedis
Anatomy & Physiology

Blood pressure
- Force exerted by blood volume on walls of vessels
- Systole
 - Contraction
- Diastole
 - Relaxation

Microcirculation
- Capillaries
- Diffusion
Anatomy & Physiology

- Microcirculation
 - Capillary BP & osmosis
 - Microcirculation
 - Hydrostatic pressure
 - Osmosis
 - Plasma proteins
 - Oncotic pressure
 - Pushing & pulling forces create balance that ensures adequate fluid in both compartments
 - Fluid balance problems

- Shock (hypoperfusion)
 - Inadequate circulation
 - Vital body tissues poorly perfused
 - Vital body processes fail
 - Results in inadequate oxygenation of tissues; eventual cell death if prolonged
 - Can occur when any part of circulatory system fails
Anatomy & Physiology

- Shock (hypoperfusion)
 - Body releases epinephrine to compensate (elevates BP and shunts blood to more vital organs)
 - Patients with signs/symptoms of shock are high-priority patients
 - Prehospital care
 - Secure airway
 - Ensure patient can breathe
 - Ensure oxygenation

Cardiovascular Disease

- Cardiovascular disease and its complications - leading cause of death in United States
- Pathophysiology of ACS
 - Arteriosclerosis
 - Progressive artery disease
 - Coronary artery disease
 - Myocardial O₂ supply and demand
Cardiovascular Disease

- Myocardial ischemia, myocardial infarction
 - Ischemia
 - Decrease in blood flow to organ/tissue causing problems but not permanent damage
 - Infarction
 - Severe obstruction, resulting in heart cell necrosis
- Acute coronary syndromes
- Patients with ischemic chest pain - highest priority

Acute Coronary Syndromes

- Scene size-up
 - Ensure safe scene
 - BSI precautions
 - Identify MOI/NOI
 - Consider need for ALS
 - Notify dispatch early

- Initial/primary assessment
 - Form general impression
 - Identify:
 - Chief complaint
 - Age
 - Gender
 - Is this a life-threatening condition?
 - Assess mental status & ABCs
 - Manage airway/ventilation
 - Note patient’s pulse quality
 - Check for signs of poor perfusion
Acute Coronary Syndromes

Focused/secondary assessment

SAMPLE history

- Signs/symptoms
- Allergies, medications
- Pertinent past medical history
- Physical examination
- Baseline vital signs

SAMPLE history

- Signs/symptoms
 - Crushing
 - Pressing
 - Tight
 - Viselike
 - Heavy
- Usually located in anterior chest
- Radiates to neck, jaw, either arm/shoulder
- Associated complaints

SAMPLE history

- Signs/symptoms
 - Aching
 - Constricting
 - Burning
 - Discomfort in chest

SAMPLE history

- Check for JVD, accessory muscle use
- Baseline vital signs
 - Rapid, slow pulses
 - Variations in BP common
 - Skin - pale, cool, sweaty
 - Lungs: note presence of equal/abnormal sounds
Acute Coronary Syndromes

- Ongoing assessment/reassessment
 - Check:
 - Vital signs
 - Mental status
 - Response to therapy
 - Continuation of pain, dyspnea
 - Pulse rate, rhythm, quality
 - Have AED & mechanical aids for CPR readily available

- Transportation
 - Priority transportation decision for chest pain
 - Rapid, quiet
 - Avoid siren use
 - Notify hospital of imminent arrival

- Emergency medical care
 - Reduce work of heart
 - Enhance O_2 delivery to cells guided by oxygen saturation
Acute Coronary Syndromes

- Decreasing body O₂ requirements
 - Limit anxiety & activity
 - Stress & fear can cause epinephrine release
 - Reduce energy requirements
 - ↑ Oxygenation if saturation is below 95%
 - Patient denial
 - Compromised respiratory/circulatory systems

Nitroglycerin

- Used to treat ischemic heart disease
- Dilates larger veins
 - Allows more blood to pool in dependent areas
 - Reduces blood returning to heart
- Dilates arteries
 - Decreases resistance to blood moving out of heart
- Contraindicated if systolic BP lower than 100 mm Hg

Nitroglycerin

- Nitroglycerin available as patch
 - Absorbed slowly over several hours
 - Not useful for acute attacks
- Contraindicated if systolic BP lower than 100 mm Hg
- Should be avoided if patient has recently taken Viagra or similar drug
Administering Nitroglycerin

- Perform focused assessment
- Take BP reading
- Question administration of last dose & effects of medication
- Obtain an order

Administering Nitroglycerin

- Ensure right medication, dose, route & patient is alert
- Place tablet/spray under tongue

Administering Nitroglycerin

- Recheck BP
- Record activity, times
- Perform reassessment
Aspirin

- Decreases formation of clots during ACS
- Before administering, assess following contraindications:
 - Is patient allergic to aspirin?
 - Has patient recently taken aspirin?
 - Does patient have recent history of GI bleeding?

Heart Failure

- Destruction of heart muscle reduces heart's power to contract
- History
 - History of hypertension or signs of recent MI
 - Shortness of breath, weakness, limited activity
 - Weakened heart inadequately pumps blood from ventricles

Heart Failure

Physical examination
- Signs
 - Noisy respirations
 - Crackles sounds at base of lung fields
 - Accessory muscle use
 - Cyanosis
 - Edema – ankle/lower legs
 - Massive tissue swelling
 - Distended neck veins
Heart Failure

- Treatment
 - Difficulty breathing
 - High-concentration O₂ via nonrebreather mask
 - Inadequate breathing
 - Positive-pressure ventilation (PPV) with bag-mask or other ventilation device
 - Upright position allowing legs to hang down
 - ALS medications

Thoracic Aortic Dissection

- Frequently occurs in men/persons over 50 y/o
- Tear in aortic wall; blood enters vessel inner lining
 - Forms false passage
 - Dissections
 - Proximal dissections
 - Distal dissections
Heart Failure

Thoracic Aortic Dissection

- Pericardial tamponade
 - Blood around heart & aorta can result in:
 - Poor venous return
 - Profound shock
 - Death

Thoracic Aortic Dissection

- History
 - Thoracic aortic dissection presents tearing, ripping, searing chest pain
 - Patient may:
 - Faint
 - Show signs of stroke
 - Experience arm numbness
Slide title correct?
Reed Elsevier, 8/2/2011
Thoracic Aortic Dissection

- Physical examination
 - Findings related to MOI
 - Occlusion of vessels
 - Hemorrhage
 - Pericardial tamponade

Thoracic Aortic Dissection

- Treatment
 - Immediate surgical intervention at hospital
 - Rapid transport
 - Supportive care
 - High-concentration O₂
 - PPV, if needed
 - Treat for shock

Abdominal Aortic Aneurysm

- Aneurysm
 - Localized abnormal dilation of blood vessel/heart
 - Abdominal aortic aneurysms (AAAs)
 - Exsanguination
Abdominal Aortic Aneurysm

- History
 - AAA typically presents with abdominal/back pain
 - Patient usually older
 - Hypertension/aneurysm history possible

- Physical examination
 - Poor perfusion
 - Elevated HR
 - Adrenaline release
 - Pale, cool, sweaty skin
 - Rigid and distended abdomen; tenderness
 - May occlude one or both femoral arteries
Abdominal Aortic Aneurysm

- Treatment
 - Immediate surgical intervention at hospital
 - Rapid transport
 - Supportive care
 - High-concentration O₂
 - PPV, if needed
 - Treatment for shock

Pulmonary Embolism

- Blood clots released from leg veins, lodged in pulmonary artery
- Can occur after surgery; patients taking birth control
- Large artery involved, shock may result
- Changes in lung circulation

Pulmonary Embolism

- History
 - Difficulty breathing
 - Chest pain increases with breathing
 - Cough up bloody sputum
 - Possibly history of:
 - Calf tenderness
 - Recent surgery
 - Prolonged bed rest
 - Recent travel
 - Use of oral contraceptives
 - Phlebitis
Pulmonary Embolism

- Physical examination
 - Findings often normal
 - ↑ HR
 - Shock present in worst cases
 - Significant obstruction, signs of right-sided heart failure
 - Possible hypoxia – cyanosis, AMS

Pulmonary Embolism

- Treatment
 - High-concentration O₂
 - Treatment for shock, as needed
 - Rapid transport crucial

Cardiac Arrest

- Heart rhythm does not generate blood flow

- Asystole
 - “Flatline”
 - No electrical activity

- Pulseless electrical activity
 - Organized electrical heart rhythm
 - No palpable pulse/ventricular fibrillation
Cardiac Arrest

- Causes
 - Adults - ventricular fibrillation likely cause
 - Time to defibrillation critical
 - EMS, CPR, AED use most important
 - Children - respiratory problems likely cause
 - Focus on providing ventilation
 - Possible ventricular fibrillation, but not as likely
 - Check EMS local treatment protocols for cardiac arrest victims younger than 8 y/o

Cardiac Arrest

- Relationship to BLS
 - 2-rescuer CPR - most common technique at scene
 - 1-rescuer CPR may be needed if partner is preparing an AED or during transport
 - Maintain secure position
 - Consider important modalities/factors when performing CPR

Cardiopulmonary Resuscitation

- Chest compressions with PPV
- Provides temporary perfusion to vital organs until circulation is restored
- May resuscitate short-term cardiac arrest victims caused by respiratory failure/arrest
Cardiopulmonary Resuscitation

- Optimal CPR benefits
 - Activate 9-1-1 system quickly
 - CPR provided early
 - Quality compressions
 - 2 inch (5 cm) compressions
 - Complete recoil of the chest
 - At least 100 compressions/minute
 - Minimal interruption

Cardiopulmonary Resuscitation

- Adult CPR
 - AHA 2010 guidelines
 - Encourage 2 inch compressions
 - Minimal interruption of compressions
 - Avoid hyperventilation
 - New sequence CAB
 - Check unresponsiveness and breathing
 - Activate response
 - Check carotid pulse
 - Start compressions
 - Compressions-to-ventilations ratio 30:2

Cardiopulmonary Resuscitation

- Adult CPR
 - Assess responsiveness and breathing, activate EMSS
 - First person at scene - check responsiveness and breathing
 - Time to defibrillation, most important variable
 - If alone, activate EMSS and retrieve AED
 - 2 people
 - 1 performs CPR
 - 1 prepares AED
 - Only exception – asphyxia
 - Ventilations first
In last note, please clarify “way” in “complete release of the chest way, critical”

In notes section--change 2005 to 2010?
Cardiopulmonary Resuscitation

- Adult CPR
 - Circulation
 - Chest compressions create blood flow
 - Recognize cardiac arrest – most important step
 - Assess pulse
 - Palpate carotid artery for 5 to 10 seconds
 - If no breathing and pulse is present
 - Perform rescue breathing 10 to 12 breaths/min
 - If no pulse, begin chest compressions
 - Chest compressions
 - Relatively rapid compression rate
 - Critical to maintain at least 100 compressions/minute
 - Guideline ratio 30:2
 - Ventilations: 8 to 10 breaths/min when advanced airway placed
 - Compress sternum 2 inches for adult

- Airway
 - Open airway with head-tilt–chin lift method
 - If trauma suspected, use jaw thrust
- Breathing
 - Do not breathe too forcefully or rapidly
 - Two breaths with each breath delivered over 1-second with visible chest rise
 - Mouth-to-mask and bag-mask can be used
RE5 Is "Two breaths with each breath delivered" clear to reader?
Reed Elsevier, 8/2/2011
Cardiopulmonary Resuscitation

- Adult CPR
 - 1-rescuer CPR
 - If only 2 rescuers available
 - 1-rescuer CPR
 - Other applies AED, evaluates quality of chest compressions
 - 2-rescuer CPR
 - 1 rescuer at victim's side
 - 1 rescuer at victim's head
 - Compression rate 100/min
 - Compression-to-ventilation ratio 30:2
 - Change compressors every 2 minutes

Adult 1-Rescuer CPR

- Check unresponsiveness
- Check for breathing

Adult 1-Rescuer CPR

- Check carotid pulse (for 5-10 seconds)
- If no pulse, begin chest compressions
Adult 1-Rescuer CPR

- Place hand in the center of the chest on the lower half off the breastbone
- Place the hand directly over the first
- Perform external chest compressions at rate of 100/min with 30:2 compression-to-ventilation ratio

Adult 1-Rescuer CPR

- Depress chest 2 inches
- Provide 2 breaths
- Perform complete cycles of 30 compressions to 2 ventilations
- Reevaluate after 5 cycles

Adult 2-Rescuer Cardiopulmonary Resuscitation
Infant and Child Cardiopulmonary Resuscitation

- Infant/child CPR
 - Infant younger than 1 year old
 - Child – from 1 year old to puberty
 - Cardiac arrest usually caused by respiratory failure/arrest, trauma
 - Assess responsiveness and breathing, activate EMSS

Child 1-Rescuer Cardiopulmonary Resuscitation

- Check unresponsiveness
- Check for breathing

- Check carotid pulse (for 5-10 seconds)
- If no pulse, begin chest compressions
- Compress chest 1/3 to 1/2 half the diameter of the chest
- At least 100 compressions per minute
See Notes section--appropriate for slides 92-99?
Child 1-Rescuer
Cardiopulmonary Resuscitation

- For smaller children use 1 arm for compressions

Child 1-Rescuer
Cardiopulmonary Resuscitation

- Deliver 2 breaths
- Continue 30:2 cycle

Child 2-Rescuer
Cardiopulmonary Resuscitation

- Perform 15:2 cycles when performing 2-rescuer child CPR
Infant 1-Rescuer
Cardiopulmonary Resuscitation

- Check unresponsiveness
- Check for breathing

Infant 1-Rescuer
Cardiopulmonary Resuscitation

- Check brachial pulse (for 5-10 seconds)
- If no pulse, begin chest compressions
- Compress chest 1/3 to 1/2 the diameter of the chest
- At least 100 compressions per minute

Infant 1-Rescuer
Cardiopulmonary Resuscitation

- Provide 2 breaths
- Continue cycles of 30 compressions to 2 breaths
Infant 2-Rescuer CPR

- Perform 15:2 cycles when performing 2-rescuer child CPR
- Use 2-thumb-encircling technique for compressions

Automated External Defibrillators

- Goals
 - Monitor patient’s heart rhythm
 - Identify shockable vs. nonshockable heart rhythms
 - Advise AED operator to initiate defibrillation

- Ventricular fibrillation from ischemic heart disease is the most common and treatable cause of sudden death
Automated External Defibrillators

- Evolution of defibrillation concept
 - Hospital experience showed early CPR and ALS application leads to higher patient survival rate
 - Portable defibrillators – 1960s
 - Time elapsed between onset and CPR and defibrillation determined to be most important

Operating an AED

- BSI
- Check responsiveness, breathing
- Check pulse for 5 to 10 seconds
- Begin CPR until AED attached
- Position AED close to victim
- Turn on AED

- Prepare to place AED on pads on patient’s chest
- Attach electrode pads to patient at right sternal border
 - Below clavicle
 - 2 to 3 inches below left arm pit
Operating an AED

- Clear patient
 - Press analyze button/allow machine to analyze
- If shock advised
 - Confirm everyone clear
 - Press shock button
 - Immediately resume CPR, starting with chest compressions

- After 5 CPR cycles:
 - Check pulse
 - Allow AED reanalyze
 - If second shock recommended, follow previous instructions
- If "no shock advised":
 - Perform 5 CPR cycles
 - Check pulse
 - Reanalyze

- Persistent ventricular fibrillation
 - After defibrillation:
 - Monitor for recurrent VF
 - If unresponsive, attend to breathing, checking circulation
 - Circulation lost en route:
 - Stop vehicle
 - Analyze rhythm
 - Deliver shock
 - If conscious patient collapses with no signs of breathing & circulation
 - Stop vehicle
 - Apply AED
 - Have AED readily available
Special Situations

- Hairy chest
- Water
- Transdermal medication
- Pacemaker/cardioverter-defibrillator

Coordination with ALS Personnel

- Coordination with ALS personnel
 - Local protocols cover interaction of ALS personnel with BLS providers
 - ALS have medical authority
 - EMT can assist paramedics
 - If ALS not possible
 - Rapid transport

Postresuscitation Care

- Postresuscitation care
 - Patients who regain spontaneous circulation after cardiac arrest show varying responses, vital signs
 - Monitor ventilations
 - Administer PPV
Maintenance

- Maintenance
 - AED must be maintained
 - Record maintenance functions
 - "Automated defibrillator: operator’s shift" checklist
 - Maintain batteries properly
 - Ensure backup batteries are available

Training, Sources of Information

- Practice frequently to maintain skill proficiency
 - Most systems require evaluation to ensure competency in AED use

Medical Direction, Quality Improvement

- Essential components
 - Education
 - Protocol development
 - Continuing education
 - Case, call review
 - Evaluation of prehospital outcomes
Summary

Arteriosclerosis is a progressive narrowing of arteries that results in development of acute coronary syndrome including:
- Angina pectoris
- Myocardial infarction

Ischemic chest pain typically occurs in center of chest and may radiate to:
- Neck, jaw, arms

Summary

Angina pectoris is chest pain that is usually caused by increased oxygen demands on heart

Myocardial infarction (MI) - death of heart muscle caused by blockage/occlusion of coronary artery

Summary

Signs, symptoms of MI include:
- Ischemic chest pain
- Sweating, pale
- Cool skin
- Shortness of breath
- Nausea
- Vomiting
- Dizziness
- Fainting
Summary

- Place patients with chest pain/shortness of breath in position of comfort
- EMTs may assist patients with prescribed nitroglycerin with administration of tablets/spray
- Nitroglycerin administration may be repeated every 3 to 5 minutes, up to 3 doses

Summary

- Heart failure - condition resulting from damaged/weak heart muscle - caused by:
 - Severe MI
 - Chronic hypertension
 - Other causes
- Patients with heart failure may exhibit shortness of breath; noisy breath sounds; swelling of ankles, lower back, abdomen; distended neck veins

Summary

- Cardiac arrest caused by heart rhythms that result in no blood flow, including:
 - Asystole
 - Pulseless electrical activity
 - Ventricular fibrillation/ventricular tachycardia
- Effective, early cardiopulmonary resuscitation (CPR) with compression-to-ventilation ratio of 30:2 increases survivability of cardiac arrest event
- CPR is most effectively performed by 2 rescuers
 - Interruptions should be limited
Summary

- Ventricular fibrillation, useless quivering of heart, results in no blood flow.

- Only effective treatment for ventricular fibrillation is electric shock with defibrillator.

- Automated external defibrillator (AED) is computerized device that recognizes shockable versus nonshockable heart rhythms, advises operator to deliver electric shock.

Summary

- AED electrode pads are placed on right upper chest, below clavicle on right border of sternum; left chest 2 to 3 inches below armpit.

- Operation of AED involves 4 distinct steps:
 - Turning device on
 - Attaching electrode pads
 - Clearing patient, allowing device to analyze
 - When advised, clearing patient, pushing shock button.

Summary

- Most AEDs can safely be used on persons older than 8 years.

- Continual training on CPR, AED use is crucial.

- Smooth, coordinated interaction with EMTs, ALS personnel increases patient’s chance of survival in all cardiac events.