Chapter 16

Environmental Emergencies

Learning Objectives

- Describe various ways body loses heat
- List signs/symptoms of exposure to cold
- Explain steps in providing emergency care to patient exposed to cold
- List signs/symptoms of exposure to heat

Learning Objectives

- Explain steps in providing emergency care to patient exposed to heat
- Recognize signs/symptoms of water-related emergencies
- Discuss emergency medical care of bites/stings
- Describe pressure laws associated with diving emergencies
Learning Objectives

- Explain steps in providing emergency medical care to patient suffering from diving incident
- Describe types of high-altitude illness
- Explain steps in providing emergency medical care to patient suffering from high-altitude illness

Thermoregulation

- Range of normal central core temperature
 - 96.4°F to 99.8°F (35.8°C to 37.7°C)
- Strenuous exercise
 - 104°F (40°C)
- Body at rest
 - 96.4°F (35.8°C)

Thermoregulation

- Hypothalamus
 - Normal metabolism gives off heat as a by-product
 - Regulates production/conservation of heat/heat loss
 - Heat distributed throughout body by cardiovascular system/lost through skin
Thermoregulation

- Core temperature
 - Body core
 - Temperature within
 - Skull
 - Thorax
 - Abdominal-pelvic cavities
 - Body’s regulatory processes maintain this temperature within narrow limits
 - Regions of body’s shell have different temperatures as distance from heart/trunk increases

Thermoregulation

- Heat production
 - All metabolic processes within body generate heat
 - Basal metabolism
 - Provides constant supply of heat
 - Metabolic rate can be increased by hormones under central nervous system
 - Muscular activity

Heat Loss

- Radiation
 - Transfer of heat in form of infrared heat rays

- Conduction
 - Transfer heat to objects in direct contact with body
 - Influenced by heat transfer properties of material in direct contact with body

- Convection
 - Heat carried away by air currents
Heat Loss

- Evaporation
 - Moisture vaporizes on body's surface
 - Evaporation rate depends on:
 - Temperature
 - Movement of air
 - Humidity
 - Wind current important on humid days

- Breathing
 - Inhaled air – heated/cooled to body temperature

Heat Loss

- Information obtained when encountering patients who are exposed to the environment:
 - What is source & duration of exposure?
 - Has the patient lost consciousness?
 - Are heat effects localized or general?

Mechanisms of Control

- Brain
 - Sets body's thermostat
 - Regulates temperature by influence on:
 - Metabolic rate
 - Cardiovascular system
Mechanisms of Control

- **Cardiovascular system**
 - Brings heated blood from body core to skin & extremities
 - If more heat must be lost
 * Skin vessels dilate
 * Increase in cardiac output
 - If heat must be conserved
 * Skin vessels vasoconstrict
 - Vasodilation/vasoconstriction of skin’s blood vessels result in great changes in blood flow through skin

- **Skin**
 - Interface between external/internal environments
 - Primary role in heat regulation
 - Layer of insulation
 - Vasodilation/vasoconstriction within the skin influence heat exchange of core body heat with the environment
 - Heat loss is also regulated through evaporation

- **Behavioral regulation**
 - Conscious process of making changes to adapt to alterations in temperature
Cold Emergencies

- Local injuries
 - Frostnip/frostbite
 - Freezing of water between/within body cells resulting in ice crystal formation
- Lowered core body temperature
 - Result in hypothermia and death

Cold Emergencies

- Prehospital care
 - Prevent further heat loss
 - Protect injured parts
 - Provide rapid transport

Cold Emergencies

- Physiologic response to cold
 - Faced with cold, body's thermoregulatory centers respond by increasing heat production & decreasing heat loss
 - Early response to cold
 - Increase in metabolic rate to generate more heat
 - Vasoconstriction to reduce heat loss
 - Shivering occurs if these measures are inadequate
 - Shivering
 - Involuntary contraction of small groups of muscles
Cold Emergencies

- Physiologic response to cold
 - Signs that CNS is affected
 - Amnesia
 - Slurred speech
 - AMS

- Cold exposure leads to vicious cycle
 - Effects of cold exposure leave the victims unable to care for themselves or move to a safer environment
 - Cold has direct effect on rate of metabolism and O₂ needs
 - Metabolism decreases 6% every °C that body's temperature drops
 - Continue resuscitation

Cold Emergencies

- Hypothermia
 - Cold injuries may take minutes or hours to occur
 - Temp and type are important variables
 - Acute Immersion
 - Icy water
 - Death can occur in 15 minutes
 - Rarely survive 1 hour
 - Cold exposure
 - Subacute exposure to cold air results in longer survival times than submersion in water of same temperature
Cold Emergencies

- Hypothermia
 - Cold exposure
 - Subacute exposure
 - Exposure to cold air results in longer survival times than submersion in water of the same temperature
 - Chronic exposure
 - Disease & drug intoxication affect outcome
 - Shock can compromise heat production and compensatory actions

Cold Emergencies

- Hypothermia
 - Predisposing factors
 - Radiation heat loss is proportional to temperature difference between environment & body
 - Conductive heat loss is increased by contact with objects that conduct heat faster than air
 - Convection heat loss is greater when victim cannot find shelter
 - Evaporative heat loss can occur with wet clothing or after sweating from exertion

Cold Emergencies

- Hypothermia
 - Predisposing factors
 - Age
 - Elderly
 - Newborn
Cold Emergencies

- Hypothermia
 - Predisposing factors
 - Medical conditions can affect ability to generate heat, regulate temperature
 - Diseases causing malnutrition
 - Infections of the blood
 - Endocrine diseases
 - Shock
 - Head injury
 - Brain disease
 - Burns
 - Spinal cord injuries

- Hypothermia
 - Predisposing factors
 - Drugs/Alcohol
 - Benzodiazepines
 - Tricyclic antidepressants
 - General anesthetics
 - Narcotics
 - Organophosphates
 - CO
 - Barbiturates
 - Phenothiazines

- Hypothermia
 - Predisposing factors
 - Sign/symptoms
 - Cold to touch
 - Decreased level of consciousness
 - Decreased motor ability
 - Decreased vital signs
 - Shivering/muscular rigidity
Cold Emergencies

- **Hypothermia**
 - Mild hypothermia (89.6°F to 95°F; 32°C to 35°C)
 - Earliest stage of hypothermia
 - Pale skin
 - Shivering
 - Difficulty in speech/movement
 - Amnesia
 - Vital signs may be normal

- **Hypothermia**
 - Moderate hypothermia (80.6°F to 89.6°F; 27°C to 32°C)
 - Muscular rigidity
 - Gradual loss of voluntary motion
 - Cardiac output drops
 - Pulse/respirations depressed
 - Pupils dilate
 - Skin pale/cyanotic
 - Pulse irregular
 - Ventricular fibrillation may develop

- **Hypothermia**
 - Severe hypothermia (less than 80.6°F; less than 27°C)
 - Cerebral blood flow is one third normal
 - Unresponsive to pain
 - Cardiac output greatly depressed
 - Significant hypotension
 - Cardiac arrest
Cold Emergencies

Management
- Determined by
 - Time required to transport patient
 - Degree of hypothermia

- Prehospital management
 - Reduce further heat loss
 - Transport patient rapidly/gently
 - Avoid maneuvers that may precipitate dysrhythmias (ventricular fibrillation)
 - CPR initiated, continue until patient is rewarmed

Resuscitation techniques
- Supplemental O₂ should be given
- Ventilatory assistance
- Avoid hyperventilation
- Avoid stimulating gag reflex
- Assessment of pulses must be undertaken before cardiac compressions initiated

Resuscitation techniques
- Assess pulse before CPR
- Arrests, attach automated external defibrillator (AED)
- Shock, provide one shock/continue CPR
 - Temperature below 86°F (30°C), withhold further shocks until temperature raised
Cold Emergencies

- Management
 - Active rewarming techniques
 - Application of heat internally/externally
 - Internal techniques applied in hospital
 - In field
 - Warm/humidified oxygen
 - Application of local heat to large superficial vessels
 - Warm fluids containing sugar to conscious patient capable of drinking

- Active rewarming techniques
 - Restricted circumstances (not recommended for all patients)
 - Immersion in tub of hot water
 - Application of warmed blankets
 - Hot-water bottles to body’s shell
 - Beware of possible rewarming shock

- Transport
 - Undertaken as soon as possible
 - Handle gently
 - Rough ride should be avoided
Cold Emergencies

- **Prevention**
 - Be conscious of hazards
 - Take precautions based on principles of heat loss
 - Clothing layering
 - Avoid contact with conductors of heat
 - Metal
 - Snow
 - Water
 - Avoid alcohol intake
 - Do not smoke
 - Take food high in carbohydrates
 - Keep moving
 - Know your physical abilities
 - Seek shelter before hypothermia clouds judgment/hampers motor ability

Cold Emergencies

- **Local cold injuries**
 - Tend to occur in exposed extremities
 - Localized, sharply demarcated
 - Gradually progress from superficial to deep with continued exposure
 - Rewarming causes marked vasodilation of the area
Cold Emergencies

Local cold injuries
 ➢ Frostnip
 ▪ Reversible cold injury caused by intense vasoconstriction
 ▪ Warmed by:
 ▪ Applying firm pressure with warm body part
 ▪ Blowing warm breath

Local cold injuries
 ➢ Superficial frostbite
 ▪ Freezing of water within upper layers of skin
 ▪ Thawing
Cold Emergencies

- Local cold injuries
 - Deep frostbite
 - Freezing extends throughout dermis
 - Can involve subcutaneous tissues, muscle, tendons, neurovascular structures, bone

- Management of frostbite
 - Well-controlled, rapid rewarming
 - Protect from further heat loss
 - Insulate with layers of clothing/blankets
 - Remove wet clothing/jewelry
Cold Emergencies

Management of frostbite
- Do not break blisters, cover with sterile dressings
- Separate fingers/toes with folded dressings
- Do not allow patient to walk on affected lower extremity
- Administer supplemental O₂
- Assess patient for hypothermia/other injuries
- Prepare for evacuation from scene

Wilderness situations
- Rapid rewarming may be advisable
- Best if walk attempt is made on frozen extremity, not on a thawed or partially one

Rapid rewarming
- Immerse affected part into basin of water large enough to accommodate part without it touching walls of container
- Preheat water temperature to 105°F (40.6°C)
- Maintain water temperature
- Keep water circulating
- Anticipate patient will feel pain
- Dress area with sterile dressings
- Protect thawed part from refreezing
Cold Emergencies

- Management of frostbite
 - Rapid rewarming
 - Keep water circulating
 - Anticipate patient will feel pain
 - Dress area with sterile dressings
 - Protect thawed part from refreezing

Cold Emergencies

- Trench foot or immersion foot
 - Prolonged exposure (10 to 12 hours) to above-freezing temperatures & dampness
 - Causes damage to small vessels/nerves/occurs in stages
 - Vasoconstriction
 - Followed by increased circulation
 - Ulcers, gangrene may follow
 - Management
 - Keep extremity warm, dry
 - Protect from weight bearing/further injury

Heat Emergencies

- General types of heat-related conditions & heat related emergencies
 - Heat rash
 - Heat cramps
 - Heat exhaustion
 - Heat syncope
 - Heat stroke
Heat Emergencies

- Predisposing factors
 - Climate
 - Exercise, acclimating
 - Age
 - Preexisting illness
 - Alcohol and drugs

- Heat rash
 - Red rash with small bumps
 - Caused by blocked sweat glands
 - More common in young persons
 - Not emergency, but can interfere with body’s ability to compensate for heat production

- Heat cramps
 - Painful muscular contractions of heavily exercised muscles
 - May be induced during excessive exercise or hard work
Heat Emergencies

- Signs & symptoms of heat cramps
 - History of muscle cramping in heavily used muscles during or immediately after exertion
 - Usually experience period of excessive sweating

Heat Emergencies

- Management of heat cramps
 - Move patient to cooler environment
 - Replace fluid and electrolyte losses with electrolyte fluid solution or water
 - Stretch cramped muscle

Heat Emergencies

- Heat exhaustion
 - Inability of cardiovascular systems to keep up with stresses imposed by hot environment
 - Blood vessels to the skin vasodilate, blood flow to the skin increases to lose the heat
 - Previously dehydrated patient is more susceptible to this condition
 - Rarely causes death
Heat Emergencies

- Signs & symptoms of heat exhaustion
 - Hot environment
 - Period of recent exertion
 - Moist skin
 - Body temperature elevated
 - Weakness or exhaustion
 - Dizziness
 - Faintness
 - Nausea
 - Headache
 - Skin gray/cold/pink

Heat Emergencies

- Management of heat exhaustion
 - Move to cooler environment
 - Modest amounts of fluid – orally or intravenously
 - Loosening/removing clothing
 - Supine position - elevated legs

Heat Emergencies

- Heat syncope
 - Transient loss consciousness
 - Blood vessels dilating compensate excessive heat
Heat Emergencies

- Signs & symptoms of heat syncope
 - History of high temperature exposure & report short loss of consciousness
 - Awake, but weak & dizzy on standing
 - Hot & diaphoretic
 - Pulse rate increased
 - Blood pressure lower than normal

Heat Emergencies

- Management of heat syncope
 - Keep patient cool
 - Supine position
 - Administer O₂ as needed
 - Transport for further evaluation

Heat Emergencies

- Heat stroke
 - Complete failure of thermoregulatory system
 - Results in extreme increases in core body temperature & damage to cells, as well as changes in mental status
 - Characterized by hot, dry skin signaling importance of evaporation
 - Life-threatening emergency
 - Mortality rate if left untreated is 80%
Heat Emergencies

- Signs & symptoms of heat stroke
 - AMS ranging from confusion to coma
 - High body temperature
 - Hot, dry skin
 - Moist skin at time of collapse
 - Skin pink or flushed, may appear ashen
 - Increased heart, respiratory rate
 - Hyposensitive
 - Seizures

Heat Emergencies

- Management of heat stroke
 - Lower body temperature, highest priority
 - Apply ice packs to large superficial blood vessels
 - Provide O₂
 - Rapid transport
 - Stop cooling when temperature reaches 102°F (38.8°C)

Drowning & Submersion Episodes

- Drowning
 - Approximately 4000 people drown in United States each year
 - Respiratory impairment from submersion or immersion in liquid medium
 - Major problem: lack of O₂
 - Hypoxia results in unconsciousness
 - Time to cardiac arrest varies, particularly in cold water
 - Patients benefit from mammalian diving reflex
Drowning & Submersion Episodes

Management of submersion episodes
- Any submersion requiring field care and transport to a hospital for treatment or observation
- First concern is protection of rescuers
 - Attempt rescue with flotation device/boat
 - ABCs priority

- Management of submersion episodes
 - Unresponsive, breathing adequately
 - Place patient in recovery position
 - Administer supplemental oxygen
 - Breathing inadequately
 - Establish patent airway
 - Administer high-concentrated O₂

- Management of submersion episodes
 - Water in upper airway should be removed by drainage or use of suction
 - Occasionally, water swallowed during submersion episode
 - No pulse felt
 - Initiate cardiac compressions
Drowning & Submersion Episodes

Management of submersion episodes

- Cardiac arrest
 - Place patient on dry surface
 - Towel-dry chest wall before attaching electrode pads of AED

- Spinal injury suspected
 - Remove from water with alignment of spine maintained
 - Long spine board
 - Jaw thrust without head lift maneuver

Animal Bites & Stings

Most severe reaction is anaphylaxis

- Other effects local
- Before swelling, remove constricting clothing and jewelry
- Watch for signs of allergic reaction and treat accordingly

If anaphylactic reaction occurs:

- Place constricting band above bite or sting on extremity
- Check distal pulses
- Remove stinger or venom sac, if present
- Once stinger is removed, place ice pack over bite or sting
Animal Bites & Stings

- **Insect and spider bites**
 - **Brown recluse spider**
 - Bite can cause local necrosis around bite
 - Venom causes local pain/spreads to surrounding skin
 - Center darkens
 - Surrounding area blanches
 - Outermost ring turns reddish
 - Systemic reaction

- **Black widow spider**
 - Venom contains neurotoxin
 - Can cause weakness and respiratory depression
 - Antivenin available for severe cases
 - Small children and debilitated adults are most susceptible to severe consequences
 - Immobilize extremity

- **Fire ants**
 - Can inflict multiple stings
 - Sting can cause small, circumscribed elevated lesion, produces pus in 6 to 24 hours
 - Care is supportive
Animal Bites & Stings

- Insect and spider bites
 - Ticks
 - Small parasite that lives off blood of mammals & birds
 - Attach to host by harpoon type structure at mouth
 - Responsible for spread of many diseases
 - Treatment supportive
 - Do not remove tick
 - Assess patient for signs of transmitted disease
 - Muscle aches
 - Headache
 - Scorpions and tarantulas
 - Cause local pain but rarely fatal
 - Unpleasant tingling feelings at site and at distant sites
 - Problems with vision and swallowing
 - Slurred speech
 - Excess salivation
 - Involuntary jerking and shaking
 - Prehospital care supportive
 - Antivenin is sometimes used in severe cases

- Bees and wasps
 - Stings painful
 - Local irritation
 - Red, inflamed appearance
 - Systemic allergies and anaphylactic reaction must be treated aggressively
Animal Bites & Stings

- **Snakebite**
 - *Pit vipers*
 - Causes local necrosis
 - Definitive care requires use of antivenin
 - Do not contain venom at bite site
 - Recognition
 - Fang marks at bite site
 - Fangs inject venom
 - Swelling
 - Pain & redness
 - *Coral snakes*
 - Causes no local necrosis
 - Nervous system is affected when poison is absorbed
 - Treat by delaying absorption
 - Recognition
 - Found in southern United States
 - Distinguished by red, yellow, & black bands
 - Tiny fangs that are close together
 - Drop of blood expressed after envenomation
 - Often hold onto & "chews" victims for few seconds
 - Early signs and symptoms are minimal redness & swelling
Animal Bites & Stings

Snakebite
- Management
 - Have patient rest
 - Remove jewelry
 - Immobilize extremity
 - Swelling present, make small mark at its edge
 - Transport patient to closest hospital able to care for snakebites
 - Coral snake bites, application of loose elastic bandage over/around bite site
 - Follow local protocols

Animal Bites & Stings

Marine animals
- Sea animals can cause stings and punctures
- Treatment
 - Flood affected area with sea water
 - Wash with acetic acid or isopropyl alcohol
 - Apply shaving cream, sand or talcum powder to area, then scrape off
 - Avoid washing area with fresh water
Animal Bites & Stings

- Marine animals
 - Punctures
 - Treatment
 - Immobilize
 - Soak in water as hot as patient can tolerate for 30 to 90 minutes
 - Avoid water that could cause heat injury
 - Toxin should be inactivated by hot water

Diving Emergencies

- Incidence
 - 9 million certified divers in United States
 - 900 to 1000 dive-related injuries/year
 - 90 dive-related deaths/year
- Risk factors
 - Divers not properly trained or certified
 - Poor shape
 - Not allowing enough time between dives
 - Use of drugs or alcohol

Diving Emergencies

- Incidence
- Prevention
 - SCUBA – self contained underwater breathing apparatus
 - DAN – not for profit organization
Diving Emergencies

- **Physiology**
 - Most diving injuries are associated with pressure changes occurring as diver descends & ascends
 - Boyle’s law
 - Ears “pop” because gases in ear expand
 - Henry’s law
 - As body is exposed to higher pressures, more of the gases in the body will dissolve and be absorbed, resulting in toxic levels
 - Dalton’s law
 - Ratio of gases within body stays the same as pressure increases

- **Dybarism**
 - Generalized term - physiologic changes seen when person exposed to pressure changes
 - Areas of body filled with air
 - Hollow organs & lungs have greatest potential to be affected
 - As gases contract & expand, structures can be stretched or can collapse

- **Decompression sickness**
 - Body descends to depths, gases in body dissolve
 - Diver ascends too quickly, gases form bubbles
 - Signs range from
 - Pain & itching
 - Shortness of breath
 - Shock
 - Death
 - Treatment
 - Symptomatic
 - Transport to hospital with hyperbaric oxygen
Diving Emergencies

Barotrauma
- Air-filled chambers most susceptible to pressure changes
- Diver ascends too quickly
 - Pressure in ears may increase, causing rupture
 - Pressure in lungs may increase, causing pneumothorax

Arterial gas embolism
- Lungs damaged during ascent
- Air may be drawn into arterial circulatory system
- Signs
 - Shortness of breath
 - Seizure
 - Paralysis
 - Weakness

Nitrogen narcosis
- “Raptures of the deep”
- Diver descends, nitrogen is affected
- Dissolves in bloodstream
- Works as narcotic drug
- May act illogically
Altitude Illness

- Incidence
 - Seen in men and women equally
 - Less severe forms
 - Acute mountain sickness
 - More severe types
 - High-altitude pulmonary edema

- Physiology
 - Occurs when rapidly ascending to higher altitude
 - At higher altitudes, there is less atmospheric pressure which can affect pressure gradients within body

- Types
 - High-altitude cerebral edema (HACE)
 - Swelling of brain following rapid ascent to altitude
 - Signs can mimic stroke
 - High-altitude pulmonary edema (HAPE)
 - Fluid pushed into alveolar spaces as person ascends rapidly to high altitude
 - Life-threatening situation
 - Acute mountain sickness (AMS)
 - Not as severe as HAPE or HACE
 - Can resemble flu
Altitude Illness

- Treatment
 - Similar for all altitude illness
 - Airway must be monitored, controlled
 - High-flow O2
 - Suction airway adjuncts
 - Primary focus - bring patient to lower altitude

Summary

- Five ways heat can be lost from body
 - Radiation
 - Conduction
 - Convection
 - Evaporation
 - Breathing

- Shivering an involuntary mechanism body uses to produce heat

- Shivering sign of mild hypothermia

Summary

- Signs of mild hypothermia
 - Shivering
 - Amnesia
 - Poor muscle coordination

- Signs of moderate hypothermia
 - Stupor
 - Loss of consciousness
 - Cessation of shivering
 - Irregular pulse
 - Dilated pupils
 - Loss of voluntary motion
Summary

- **Sign of severe hypothermia**
 - Unresponsiveness to pain
 - Significant hypotension
 - Cardiac arrest from ventricular fibrillation

- **Signs of moderate hypothermia**
 - Stupor
 - Loss of consciousness
 - Cessation of shivering
 - Irregular pulse
 - Dilated pupils
 - Loss of voluntary motion

Summary

- Continue resuscitation until patient has been warmed

- Check suspected hypothermia patient’s pulse 30 to 45 seconds before administering CPR

- Hypothermic patient into cardiac arrest, apply shocks up to three times with automated external defibrillator (AED), withhold additional shocks if temperature is below 86°F (30°C)

Summary

- Internal active rewarming techniques may be needed to rewarm hypothermic patient at hospital

- Severe vasoconstriction of superficial areas of body that occurs from hypothermia can lead to frostbite

- Three types of local cold injuries
 - Frostnip
 - Superficial frostbite
 - Deep frostbite
Summary

- Frostnip characterized by pale, cold skin; loses sensation, becomes red/itchy on warming

- Superficial frostbite characterized by freezing of upper layer of skin while deep skin remains soft
 - Signs
 - White/waxy skin
 - Hard on surface
 - Soft below

Summary

- Deep frostbite characterized by freezing upper/deeper layers of skin
 - Appears
 - White
 - Feels frozen
 - Resists depression

Summary

- Treatment of mild/moderate frostbitten extremity
 - Remove jewelry
 - Apply dressing to affected part
 - Remove wet clothing
 - Cover part
 - Prevent further exposure to moisture
 - Do not rub/massage

- Rapid rewarming technique in which affected part is placed in 105°F (40.6°C) water until warmed
Summary

- Three types of heat emergencies
 - Heat cramps
 - Heat exhaustion
 - Heat stroke

- Heat cramps - muscular cramps caused by strenuous exertion/excessive loss of body fluids/electrolytes

Summary

- Signs of heat exhaustion
 - Weakness/exhaustion
 - Faintness
 - Pale skin
 - Rapid pulse
 - Hypotension
 - Headache
 - Nausea

- Move patients with heat exhaustion to cooler environment, loosen/remove clothing, place in supine position (legs elevated), provide 1 to 2L of water, fan

Summary

- Heat stroke caused by failure of body’s heat loss mechanisms/development of extremely high temperature

- Signs of heat stroke
 - Hot/dry skin
 - Rapid pulse/respiratory rate
 - Hypotension
 - Seizures
Summary

Treatment of heat stroke
- Move patient to cooler environment
- Administer high-concentration oxygen
- Cool with sponge/wet towels/fanning
- Place ice packs in armpits, groin, back of neck
- Rapidly transport to hospital

Rescuing drowning victim
- Rescuer safety is priority
- Throw flotation devices to victim
- Use boat to remove victim from water

Management of submersion patient in cardiac arrest
- Establish an airway
- Provide rescue breathing/chest compressions
- Use an AED for ventricular fibrillation
- Provide up to three shocks with AED for patient who is severely hypothermic

Spider bites may result in serious/rare complications
- Bleeding disorders
- Fever
- Chills
- Weakness
- Muscular rigidity

Prehospital care of insect bites
- Supportive care
- Clean site
- Remove stinger
- Immobilize extremity
Summary

- Poisonous snakes in United States
 - Pit Vipers (copperheads, rattlesnakes)
 - Coral snakes

- Management of poisonous snake bites
 - Immobilize affected part with splint
 - Mark edges of swollen area
 - Transport to appropriate hospital

Summary

- Coral snake bites may require application of elastic bandage around bite/limb
- Stings from marine animals should be flooded with sea water, rinsed with vinegar/alcohol
- Punctures treated by immobilizing area soaking with hot water

Summary

- Diving emergencies
 - Decompression sickness
 - Barotrauma
 - Arterial gas embolism
 - Nitrogen Narcosis

- Treatment
 - Symptomatic (ABCs)
 - Transport for hyperbaric treatment
Summary

- Rapid ascent to altitude can result in life-threatening conditions
 - Cerebral edema
 - Pulmonary edema

- Treatment
 - Airway management
 - Rapid descent to lower altitude

Questions?