Chapter 29
Advanced Airway Management

Learning Objectives
- Describe indications for advanced airway management
- List complications associated with advanced airway management
- Explain rationale for securing endotracheal tube
- State consequence of and need to recognize unintentional esophageal intubation

Learning Objectives
- State consequence of and need to recognize unintentional esophageal intubation
- List equipment required for orotracheal intubation
- Describe proper use of curved blade for orotracheal intubation
- Describe proper use of straight blade for orotracheal intubation
Learning Objectives

- Describe methods of choosing appropriate-size endotracheal tube in an adult patient
- State reasons for proper use of stylet in orotracheal intubation
- Explain rationale for use of the stylet
- Describe skill of orotracheal intubation in the adult patient

- Describe skill of confirming endotracheal tube placement in adult, infant, child
- Differentiate airway anatomy in infant, child, adult
- State formula for sizing an infant/child endotracheal tube
- Define various alternative methods for sizing infant, child endotracheal tube

- Describe skill of orotracheal intubation in infant, child
- Describe skill of securing endotracheal tube in adult, infant, child patient
- Describe indications, contraindications, technique for insertion of nasogastric tubes
Introduction

- Most essential skills EMT brings to patient:
 - Airway management
 - PPV with mask devices
 - Oxygenation

- Unresponsive patients who require continuous PPV or when mask device fails to provide adequate ventilation:
 - More definitive airway management techniques may be needed:
 - ET
 - Dual-lumen intubation device
 - Pharyngotracheal lumen airway
 - Laryngeal mask/King LT-D supraglottic airway
Introduction

Most systems do not allow EMT to use advanced airway skills
- Determined by:
 - State rules
 - System medical director
 - Leadership within EMS system

Factors guiding use of particular intervention:
- Time, difficulty training providers
- Ability to maintain skill proficiency, based on frequency of use
- Cost to EMS system

Advanced and alternative airway devices are only as good as the skill level of the provider who is using them
- Inappropriate use can be fatal to the patient
- Must well trained and well practiced
 - Preparation
 - Practice
 - Reinforcement
 - Continued evaluation of your competency
Cricoid Pressure

- Developed for use in OR to prevent passive regurgitation of food related to medication and paralysis
- Useful for patient without cough/gag reflex to help prevent regurgitation and aspiration during ET intubation

- Can be used while patient is being ventilated with bag-mask
- Pressure is applied to cricoid cartilage
 - Complete circle of rigid cartilage
 - Presses esophagus against the spine
 - Closes esophagus, helps prevent gastric inflation and regurgitation
Cricoid Pressure

- Cricoid cartilage is inferior to the cricothyroid membrane
 - To find it, locate thyroid cartilage
 - Slide finger to the depression just below the cricothyroid membrane
 - Prominence below cricothyroid membrane is cricothyroid cartilage

Cricoid Pressure

- During application of cricoid pressure, perform the following measures:
 - Verify correct anatomy to avoid damage to other structures
 - Avoid excess pressure in infants and children
- Use technique only when sufficient personnel are available
Endotracheal Intubation

- Most effective form of airway management

- Properly placed ET tube rests in the trachea and seals against the internal wall with inflated cuff

- Seal around the ET tube helps prevent aspiration of liquids and other material into lungs

Endotracheal Intubation

- Nasotracheal intubation
 - ET tube passed through nose into the trachea
 - Considered “blind” placement technique
 - ET tube is placed into the trachea through the nose without the EMT being able to see where the tube is going
 - Carries higher risk of complications and injury

Endotracheal Intubation

- Purpose
 - Orotracheal intubation is the most effective way of controlling the patient’s airway
 - EMTs perform orotracheal intubation for patients in respiratory or cardiac arrest
 - Provides complete control of airway and minimizes risk of aspiration
Endotracheal Intubation

- Permits better O₂ delivery, more effective ventilation, and deeper suctioning than other methods

- Indications for use:
 - Prolonged PPV required and cannot be achieved by other methods
 - Apneic patients
 - Unresponsive patients who cannot protect their airway

Endotracheal Intubation

- Advantages of use:
 - Prevents gastric distention
 - Minimizes aspiration risk
 - Allows access to lower airway for suctioning

Endotracheal Intubation

- Complications
 - Esophageal intubation
 - Most dangerous is unrecognized intubation of the esophagus
 - Tube passes into the esophagus rather than trachea
 - Important to confirm proper placement after every attempt at intubation and periodically thereafter
 - If tube becomes dislodged and not corrected within minutes:
 - Inadequate ventilation
 - Severe hypoxia
 - Gastric inflation
Endotracheal Intubation

- Complications
 - Inadequate ventilation and oxygenation
 - Produced by prolonged attempts at intubation without intervening periods of PPV
 - Results in hypoxia, hypoxemia
 - Attempt no longer than 30 seconds without intervening periods of ventilation with mask device

- Complications
 - Soft tissue trauma
 - Lips, teeth, tongue, gums, and airway structure damage can occur if laryngoscope is used forcefully
 - Also occurs when top teeth are used for leverage to view the vocal cords
 - Laryngoscope must be carefully inserted in the mouth and used gently to lift the jaw and epiglottis, without tilting the blade back over the teeth

- Complications
 - Right main stem bronchus intubation
 - If tube is inserted too far, it enters the right main stem bronchus because of its straight angle off the trachea and larger size
 - Results in ventilation of only 1 lung
 - After intubation, check breath sounds on both sides
 - Stop insertion of the tube when the proximal end of the cuffed ET tube passes vocal cords
 - Use reference marks on ET tube to assist in estimating location
Endotracheal Intubation

- Complications
 - Vomiting
 * Laryngoscope can induce gag reflex in unresponsive patients
 * Results in vomiting and possible aspiration of stomach contents into the lungs
 * Always have suction ready

- Bradycardia & dysrhythmias
 * React to stimulus of intubation because of stimulation of the autonomic nervous system
 * Check heart rate periodically

- Tube dislodgement
 * Potential hazard during patient movement
 * Always reassess and confirm tube position after moving patient
 * Never blindly attempt to reposition or reinset the tube
 * If any doubt about tube placement, remove the ET tube and ventilate with a bag-mask device and oral adjunct
 * Continuous monitoring using waveform capnography is the standard to confirm proper tube placement
Endotracheal Intubation

- Equipment
 - PPE
 - Gloves
 - Mask
 - Protective eyewear

- Laryngoscope
 - Handle & blade attached by locking bar at end of handle
 - When in use, blade hooks around locking bar and extends to a 90° angle

- 2 types blades used: straight and curved
 - Blade is used to sweep the bulk of the tongue to the side and lifts the remainder of the tongue and jaw upward
 - Also lifts the epiglottis and allows direct visualization of the vocal cords and glottic opening.
Endotracheal Intubation

Equipment

- Laryngoscope
 - Straight blade (Miller blades)
 - Narrow with curved central channel
 - Available sizes: 0 to 4
 - Directly lifts epiglottis upward, allows visualization of vocal cords
 - Tube should be inserted in right side of mouth to maintain visualization of glottis opening until point of insertion

- Curved blade (MacIntosh blade)
 - Available sizes: 0 to 4
 - Inserted into vallecula
 - Indirectly elevates epiglottis away from larynx, allowing visualization of vocal cords and glottis opening

- Assembled by:
 - Inserting notch on blade onto locking bar or handle
 - Lift blade up until it locks into place and light comes on
Endotracheal Intubation

- **Equipment**
 - Endotracheal tubes
 - Come in variety of sizes
 - Have universal features, important to procedure
 - Sizes 2.5 to 10 mm, internal diameter
 - Components
 - 15-mm adapter
 - Larger tubes have a cuff filled with air to seal space between the tube and the tracheal wall
 - Murphy’s eye
 - Adult length is 33 cm
 - Markings on the tube assist in proper placement after insertion

- **Equipment**
 - Stylet
 - Malleable metal tube that is inserted into ET tube
 - Provides stiffness & shape to help guide tube during intubation
Endotracheal Intubation

- Equipment
 - Water-soluble lubricant
 - Eases insertion of the ET tube into the airway
 - Place liberally over the cuffed end of the tube

Endotracheal Intubation

- Equipment
 - Syringe
 - 10-mL syringe is used to test cuff for leaks before insertion
 - Remains attached and can be used to reinflate the cuff after placement
 - After cuff is inflated, remove the syringe and test the pilot balloon near syringe insertion point for fullness
 - If it remains attached after inflation, air may bleed back into syringe, reducing the seal of the cuff in the trachea
 - If pilot balloon collapses, select a new tube

Endotracheal Intubation

- Equipment
 - Securing device
 - Tape
 - Tape loosens when wet
 - After securing the ET tube in place, use an oral airway as a bite block
 - Commercial devices
 - More likely to secure tube in place
 - Function as bite block and securing device
 - Learn and use the one advocated in your system protocols
Endotracheal Intubation

Equipment

- **Suction**
 - Should be readily available during intubation procedure.
 - Rigid, large-bore catheter should be available to evacuate secretions, blood, or vomitus from the upper airway during ET tube placement.
 - After tube placement, attach a soft, sterile French (Fr) catheter to the suction unit for ET suctioning.

Towels

- Helps place head in sniffing position.
- Elevates shoulders in infants/small children.
- Elevating the back of the head in adults and shoulders in infants often necessary to achieve visual alignment of structures between the mouth and glottis opening.

Endotracheal Intubation

Procedure

- Orotracheal intubation is most frequently used by advanced EMTs.
 - Secures the airway and ventilates an apneic patient in respiratory or cardiac arrest.
 - May be used for anyone unresponsive to painful stimuli or lacks gag reflex to facilitate PPV and prevent aspiration.
Skill 29-1: Inserting an Orotracheal Tube

- Take appropriate personal precautions
- Provide adequate PPV by bag-mask @ 100% O₂

Skill 29-1: Inserting an Orotracheal Tube

- Assemble, test all equipment
- Check cuff for leaks by inflating
- Deflate cuff after checking

Skill 29-1: Inserting an Orotracheal Tube

- Assemble blade, handle
- Make sure light is "tight & bright"
Skill 29-1: Inserting an Orotracheal Tube

- Place head in head-tilt/chin position to allow visualization
- Holding laryngoscope handle in left hand, insert blade into right corner of mouth

- With right hand, gently insert ET in right side of oral cavity, through vocal cord
- Remove laryngoscope blade, extinguish lamp, remove stylet if used
- Inflate cuff with 5 to 10 mL of air, remove syringe

- 2nd EMT, attaches bag-mask, delivers artificial ventilation while you confirm tube placement
- Confirm placement with end-tidal CO2 monitor, EDD, or both
- Secure tube, ventilate at appropriate rate
Skill 29-1:
Inserting an Orotracheal Tube

- If trauma is suspected, use jaw thrust maneuver, maintaining neck in inline position

Endotracheal Intubation

- Confirming proper tube placement
 - After intubation, you must ensure the ET tube has entered the trachea
 - Primary confirmation
 - Direct visualization of tube passing between the vocal cords
 - Observation of the rise and fall of the chest with breathing
 - Auscultation of breath sounds

Endotracheal Intubation

- Confirming proper tube placement
 - Secondary confirmation
 - CO₂ detectors
 - End-tidal CO₂ monitoring
 - Esophageal detector devices
 - Pulse oximetry
 - Confirmation of proper placement is critical
Endotracheal Intubation

- Confirming proper tube placement
 - If sounds are present only in the epigastrium, assume an esophageal intubation
 - Unrecognized esophageal intubation results in profound hypoxia, possible brain damage, death
 - In this situation, deflate cuff and remove tube
 - Hyperoxygenate with bag-mask device with 100% O₂
 - Attempt to reintubate
 - Only make 2 attempts at intubation

- CO₂ detectors
 - Checking for CO₂ is helpful in confirming proper placement of E.T tube
 - CO₂ exists in minimal amounts in ambient air, compared with amount present in exhaled air
 - Designed to monitor and identify amount of CO₂ present in exhaled air

- CO₂ detectors
 - Some devices provide numeric value
 - Other devices express quantity with a wave on a monitor
 - Colorimetric end-tidal detector, uses color change on paper to express presence or absence of CO₂ in exhaled air
 - Can also be built into bag-mask device
Endotracheal Intubation

- Confirming proper tube placement
 - Esophageal detector devices
 - Consists of suction mechanism attached to opening of the ET tube
 - Extending from the top of the device is a large syringe/bulb
 - Generates suction needed to confirm placement of ET tube
 - After placement of the ET tube and primary confirmation, the device is attached to the opening of the tube
 - Bulb is then squeezed and released, or the syringe is pulled back

Endotracheal Intubation

- Secondary confirmation
 - Pulse oximetry
 - Monitors O\textsubscript{2} saturation through measurements of light transfer through capillary beds and hemoglobin
 - Attach to tip of the patient's finger over the nail bed or attached to an earlobe
 - Reads transmission of red/IR light through capillary bed below
 - Uses colorimetric method of red/IR light waves to determine percentage of O\textsubscript{2} saturation of hemoglobin
Endotracheal Intubation

- Secondary confirmation
 - Pulse oximetry
 - Not useful as only tool for confirmation of the effectiveness of O₂ therapy or ET tube placement
 - Data from devices are too slow
 - Unreliable as source of feedback and decision making
 - Use as adjunct to assessment

Alternative Airway Devices

- Alternative airway devices
 - Esophageal tracheal combitube (ETC)
 - Pharyngotracheal lumen (PTL)
 - Laryngeal mase airway (LMA)
 - King LT-D supraglottic airway
 - Often, basic airway maneuvers and a bag-mask device are adequate to maintain airway until hospital arrival
Alternative Airway Devices

- **ETC & PTL**
 - Look similar to ET tube but have 2 internal lumens
 - After insertion, 2 balloons are inflated
 - When bag-mask device is attached to the proper port, air is forced into the pharynx and lungs
 - Esophageal balloon prevents air from entering the esophagus and prevents regurgitation from vomiting
 - If inadvertently inserted into the trachea, device can be used the same as an ET tube

Complications and contraindications
- Most significant: ventilation through the wrong port after attaching the device
- It is critical to check for primary placement and secondary confirmation after insertion
- May cause esophageal wall damage because of its invasive nature
Alternative Airway Devices

- **ETC & PTL**

 Complications and contraindications
 - May cause esophageal wall damage because of its invasive nature
 - Do not use if patient:
 - Is less than 5 feet tall
 - Is less than 14 years
 - Has a history of caustic ingestion
 - Has esophageal disease
 - Has inactive gag reflex

- **Equipment needed to insert ETC or PTL:**
 - PPE: gloves, eyewear, mask
 - Stethoscope
 - Suction
 - End-tidal CO₂ monitoring device
 - Water-soluble lubricant
 - 2 syringes to inflate the pharyngeal and distal cuffs
 - Bag-mask device with O₂ tubing
 - O₂
 - Securing device

Alternative Airway Devices

- **Esophageal-tracheal combitube (ETC) & (PTL)**

 Procedure
 - Insertion is indicated when prolonged PPI is required but cannot be achieved by other methods
 - Either device can be used as a backup to ET intubation
 - Laryngeal mask airway
 - Tube with small, air-filled mask at distal end
 - Tip of mask rests above upper end of esophagus and surrounds opening of larynx
 - Mask is inflated, creating seal around laryngeal opening
 - Bag-mask attached to external port, air is directed into larynx, lungs
Skill 29-2: Inserting Esophageal-Tracheal Combitube

- Take appropriate personal precautions
- Hyperoxygenate (10 to 20 breaths/min) for 30 sec with bag-mask device, supplemental O_2

Skill 29-2: Inserting Esophageal-Tracheal Combitube

- Check, prepare device for insertion
- Place head in neutral position
- Perform tongue-jaw lift

Skill 29-2: Inserting Esophageal-Tracheal Combitube

- Insert device midline, following natural curvature of pharynx
- Insert until teeth are between black rings on tube
Skill 29-2: Inserting Esophageal-Tracheal Combitube

- Inflate distal cuff using syringe

Skill 29-2: Inserting Esophageal-Tracheal Combitube

- Attach bag-mask to appropriate port (assuming esophageal placement), ventilate

Skill 29-2: Inserting Esophageal-Tracheal Combitube

- Obtain secondary confirmation with end-tidal CO2 monitoring
- Secure device/confirm that device remains properly secured
Alternative Airway Devices

- Laryngeal mask airway
 - Tube with small, air-filled mask at distal end
 - When properly inserted, the tip of the mask rests above the upper end of the esophagus and surrounds the opening of the larynx.

Alternative Airway Devices

- Laryngeal mask airway (LMA)
 - Complications and effectiveness
 - Failure to achieve adequate placement
 - Not as effective as other devices in preventing gastric inflation and regurgitation
 - Mask seal does not provide same degree of protection afforded by a tracheal tube or ETC
 - LMA is better than a bag-mask in preventing regurgitation
 - Patients should be monitored carefully for patency of the airway with suction immediately available in case of vomiting.

Alternative Airway Devices

- Laryngeal mask airway (LMA)
 - Equipment needed to insert an LMA
 - PPE: gloves, eyewear, mask
 - Stethoscope
 - Suction
 - End-tidal CO₂ monitoring device
 - Water-soluble lubricant
 - Syringe to inflate mask
 - Bite block/bite stick
 - Bag-mask O₂ tubing
 - O₂
 - Securing device
Alternative Airway Devices

- Laryngeal mask airway
 - Procedure
 - Indicated for patients in whom prolonged PPV is required
 - Indicated for apneic and unresponsive patients who cannot protect airway
 - Valuable backup for failed tracheal intubation

Skill 29-3
Inserting a Laryngeal Mask Airway

- Take appropriate personal precautions
- Tightly deflate cuff so that it forms smooth "spoon shape"

Skill 29-3
Inserting a Laryngeal Mask Airway

- Lubricate posterior surface of mask with water soluble lubricant
- Hold laryngeal mask airway like pen
Skill 29-3
Inserting a Laryngeal Mask Airway

- With patient’s head extended and neck flexed, carefully flatten LMA tip against hard palate
- Use index finger to push cranially

- Advance mask until definite resistance felt at base of pharynx
- Gently maintain cranial pressure with nondominant hand while removing index finger

- Attach bag-mask, ventilate
Alternative Airway Devices

- King LT-D supraglottic airway
 - Disposable supraglottic airway created as an alternative to tracheal intubation or mask ventilation
 - Designed for PPV and spontaneously breathing patients
 - Easy to insert and results in minimal airway trauma

Alternative Airway Devices

- King LT-D supraglottic airway
 - Complications & contraindications
 - Similar to other blind placement, multilumen devices
 - Correct-size airway must be used to avoid damage
 - Must not be used on patients with esophageal varices or damage to the throat and neck
 - Once placed, ensure the airway and lungs are inflating and patient is being ventilated
 - Has only 1 ventilation port
 - If the tube is improperly placed, it must be removed

Alternative Airway Devices

- King LT-D supraglottic airway
 - Equipment
 - Rigid tube with 2 distal cuffs
 - Both cuffs are inflated through 1 port
 - Side port allows for gastrostomy tube placement
 - Designed to slide into the trachea and provide a seal around the trachea, allowing patient to be ventilated
Alternative Airway Devices

- King LT-D supraglottic airway
 - Procedure
 - Place the patient’s head in a neutral position
 - Ensure both cuffs on the tube are deflated
 - Slide tube into throat until ventilation port is at the patient’s teeth
 - Inflate the cuffs
 - Attempt to ventilate the patient

- Continue ventilation attempts while pulling the tube gently and slowly out of the mouth
- Auscultate breath sounds and secure tube in place
- Document the procedure
- If chest does not rise as the tube is slowly pulled back, remove the tube and ventilate with GPA and bag-mask
Suctioning

- Used for patients intubated with a tracheal tube
- Deep suctioning is indicated when a patient has aspirated material into the lungs or copious amounts of water after a submersion incident

Suctioning

- Once intubated, insert the catheter through the ET tube
 - Size of the catheter must be small enough to fit through the tube
 - Should be soft as to not damage airway

Suctioning

- Pay particular attention to sterile technique
 - Entering deep into body cavity
- Use low to medium suction
 - Hypoxia is a common side effect
 - Limit attempts to no more than 15 seconds
Suctioning

- Indications for endotracheal suctioning
 - Obvious secretions
 - Poor compliance when using bag-mask technique

Suctioning

- Complications of oro-tracheal suction
 - Abnormal heart rhythms
 - Hypoxia
 - Coughing
 - Mucosal damage
 - Bronchospasm

- Proper technique minimizes potential for complication

Skill 29-4
Performing Orotracheal Suctioning

- Check equipment before proceeding, use sterile technique
Skill 29-4
Performing Orotracheal Suctioning

- Insert catheter without suction on
- Advance catheter just above carina
- Apply suction, withdraw catheter with twisting motion

Skill 29-4
Performing Orotracheal Suctioning

- If necessary, stop hyperoxygenate patient
- Repeat suctioning

Advanced Airway Management in Infants/Children

- Intubation
 - Airway management is particularly important because respiratory problems are common cause of death
Advanced Airway Management in Infants/Children

- Intubation
 - Anatomic and physiologic considerations
 - All structures are smaller and more easily obstructed than adults
 - Suctioning is particularly important
 - More difficult to create a single, clear visual plane from the mouth through the pharynx to view the glottis opening for orotracheal intubation
 - Children have narrower and softer tracheas
 - Cricoid ring is the narrowest portion of airway
 - Because cartilage is less rigid and developed, a cuff is not inflated

- Intubation
 - Equipment
 - Special considerations to help determine proper type and size of bag-mask device, laryngoscope blade and ET tube
 - Proper size of bag-mask is necessary
 - Markers on the tube assist in placing tube at proper depth in trachea

- Intubation
 - Procedure
 - Orotracheal intubation is the most effective means to secure the airway
 - In apneic patients, the use of orotracheal intubation allows:
 - Complete control of airway
 - Protection from aspiration
 - Better delivery of O₂
 - Deeper suctioning
Advanced Airway Management in Infants/Children

- Intubation
 - Procedure
 - Confirmation of tube placement is the same as adults
 - For infants and small children, assess for symmetrical rise and fall of chest
 - Best indicator of tube placement because breath sounds may be misleading

Skill 29-5: Intubating an Infant/Child

- Take appropriate personal precautions
- Ensure adequate ventilations by bag-mask at age-appropriate rate
- Administer 100% O₂

Skill 29-5: Intubating an Infant/Child

- Align patient’s head to ensure ease of visualization
- Unless trauma is suspected, tilt head, lift chin, attempt to visualize vocal cords
Skill 29-5: Intubating an Infant/Child

- Use minimal force for intubation (touch is critical)
- Holding laryngoscope handle in your left hand, insert laryngoscope blade into right corner of mouth

Skill 29-5: Intubating an Infant/Child

- Visualize glottic opening, vocal cords

Skill 29-5: Intubating an Infant/Child

- Do not lose sight of vocal cords
Skill 29-5: Intubating an Infant/Child

- With right hand, gently insert ET until glottic marker, if present, is placed at level of vocal cords

Skill 29-5: Intubating an Infant/Child

- If breath sounds are equal bilaterally and no sounds are heard in epigastrium
 - Secure ET in place

Advanced Airway Management in Infants/Children

- Intubation
 - Complications
 - In 1 study in an urban EMS system, ET did not improve survival over bag-mask ventilation
 - Continuously monitor heart rate during intubation attempts
 - If a slow heart beat is noted, interrupt the intubation attempt and rev ventilate with a bag-mask
Advanced Airway Management in Infants/Children

- Orotracheal suctioning
 - Use rigid catheter
 - Do not touch back of the airway
 - Suctioning time should be less than adults
 - Can become significantly hypoxic if prolonged
 - Perform nasal suctioning with:
 - Bulb suction
 - Small French catheter with low-medium suctioning

Advanced Airway Management in Infants/Children

- Nasogastric tube insertion (NG)
 - Removes air and decompresses the stomach
 - If unresponsive, used when there is difficulty performing PPV due to gastric inflation

Advanced Airway Management in Infants/Children

- Nasogastric tube insertion
 - Complications and contraindications
 - Tracheal insertion of the tube
 - Nasal trauma
 - Bleeding
 - Induced vomiting
 - Passage into the cranium in basilar skull fractures
 - Presence of major head, facial/spinal trauma
Advanced Airway Management in Infants/Children

- Nasogastric tube insertion
 - Equipment
 - Nasogastric tubes in assorted sizes
 - 20-mL syringe
 - Water-soluble lubricant
 - Emesis basin
 - Tape
 - Stethoscope
 - Suction unit: suction catheter
 - Towels to pad the shoulders, as needed

Skill 29-6: Inserting NT tube

- Prepare/assemble equipment

- Measure tube from tip of nose, around ear, to below xiphoid process

- Lubricate distal end of tube

- If trauma not suspected, place patient supine, with head turned to side, pass tube along the nasal floor
Skill 29-6: Inserting NT tube

- Check placement of tube by aspirating stomach contents, auscultating over epigastrium while injecting 10 to 20 mL of air into tube.

Skill 29-6: Inserting NT tube

- Aspirate stomach contents
- Secure tube in place

Summary

- Cricoid pressure (Sellick maneuver) helps prevent regurgitation/aspiration in unresponsive patient without cough/gag reflex during intubation.
- Cricoid pressure is applied to cricoid cartilage, which presses esophagus against spine. This closes esophagus, helps prevent gastric inflation, regurgitation.
Summary

- Most effective form of airway management is endotracheal intubation
- ET can be passed (orotracheal)

Summary

- Indications for ET intubation include situations in which prolonged PPV is required and cannot be effectively achieved by other methods
 - Indicated for apneic patients & unresponsive patients who cannot protect airway, as evidenced by absence of cough or gag reflex

Summary

- Advantages of orotracheal intubation include:
 - Preventing gastric distention
 - Minimizing risk of aspiration
 - Allowing for suctioning of airway
Summary

- Complications of intubation include:
 - Esophageal intubation
 - Inadequate ventilation
 - Oxygenation from prolonged attempts
 - Soft tissue trauma
 - Right main stem bronchus intubation
 - Vomiting
 - Bradycardia, dysrhythmias
 - Tube dislodgement
 - Self-extubation

Summary

- Esophageal intubation is most dangerous complication of endotracheal intubation because it leads to inadequate ventilation, severe hypoxia, gastric inflation if not corrected within minutes.

- Intubation attempts should take ≥30 sec without intervening periods of ventilation with mask device.

Summary

- It is important to secure ET tube after intubation to prevent tube dislodgement during patient movement.

- Straight laryngoscope blade directly lifts epiglottis upward to allow visualization of the vocal cords, often used when intubating infant & children.
Summary

- Curved blade is inserted into vallecula, which indirectly elevates epiglottis away from larynx, allows visualization of vocal cords, glottic opening
- ETs vary in size from 2.5 to 10 mm in internal diameter

Summary

- Stylet is a malleable metal tube inserted into ET tube to provide stiffness, shape to help guide tube during intubation, should not protrude from end of ET tube
- ET tube should be lubricated with water-soluble lubricant before insertion into trachea

Summary

- Confirmation of tube placement includes:
 - Direct visualization of tube passing between vocal cords
 - Observation of rise and fall of chest
 - Auscultation of breath sounds
 - CO₂ detectors
 - Esophageal detector devices
 - Pulse oximetry
Summary

- Confirmation of proper tube placement is critical because unrecognized esophageal intubation results in profound hypoxia, possible brain damage/death.

- Alternative airway devices include:
 - Esophageal-tracheal Combitube (ETC)
 - Pharyngotracheal lumen (PTL)
 - Laryngeal mask airway (LMA)
 - King LT-D supraglottic airway

Summary

- ETC, PTL are dual-lumen devices that are blindly inserted into esophagus/trachea.
 - Different ports are used to ventilate depending on where tube is inserted.

- Most significant complication of ETC and PTL use is ventilating through wrong port after attaching device.
 - EDD cannot be used to check placement with these devices.

Summary

- Primary complication of LMA is failure to achieve adequate placement.

- Indications for endotracheal suctioning are obvious secretions, poor compliance, which may indicate an obstructed airway.

- Complications include abnormal heart rhythms, hypoxia, coughing, mucosal damage, bronchospasms.
Summary

- Infants/children have smaller anatomic airway structures that are more easily obstructed
 - Tongue is larger, can impede visualization of vocal cords with intubation
 - Narrower, softer tracheas, swelling can more easily obstruct their tracheas
 - Cricoid ring - narrowest portion of airway
 - Because cartilage is less rigid, developed, uncuffed ET is used

Summary

- To estimate ET tube size for children, use this formula:
 - 16 plus the patient’s age divided by 4
 - Other methods include selecting tube the size of child’s little finger/nasal opening
 - Uncuffed tube should be used in children younger than 8 y/o

Summary

- In unresponsive infants/children, NG tubes are used when there is difficulty performing PPV because of gastric distention
- Contraindications to NG tube insertion include:
 - Presence of major facial, head/spinal trauma
Summary

- Complications of NG tube insertion include:
 - Tracheal insertion of tube
 - Nasal trauma
 - Bleeding
 - Vomiting
 - Passage into skull

- Providers must weigh risks vs. benefits of placing an advanced airway
 - In many cases, basic airway procedures are adequate for prehospital airway maintenance

Questions?