Chapter 6

Airway

Learning Objectives

- Identify and label major structures of the respiratory system on a diagram
- List signs of adequate & inadequate breathing
- Describe steps in performing a head-tilt/chin lift
- Relate MOI to opening the airway
- Describe steps in performing a jaw thrust

Learning Objectives

- State the importance of having a suction unit ready for immediate use when providing emergency care
- Describe techniques of suctioning
- Describe how to measure and insert an OPA & an NPA
- Describe how to ventilate with a pocket mask
Learning Objectives

- List steps in performing mouth-to-mouth artificial ventilation
- Describe steps in ventilating a patient with a bag-mask device while using the jaw thrust
- List parts of a bag-mask system
- Describe steps in artificially ventilating a patient with a bag-mask device

Learning Objectives

- Describe signs of adequate & inadequate ventilation using the bag-mask device
- Describe the steps in ventilating with a flow-restricted, oxygen-powered ventilation device
- Define components of an O₂ delivery system
- Identify nonrebreather face mask; state the O₂ flow requirements for its use

Learning Objectives

- Indicate when to use nasal cannula vs. nonrebreather face mask
- Identify nasal cannula; state flow requirements
- List steps in performing mouth-to-stoma artificial ventilation for adult, child, infant
- Demonstrate O₂ delivery for infant & child
- Describe signs of FBAO
Introduction

- Assess ABCs on every call
- Airway, ventilation, oxygenation management
 - First priority
- Must be able to clear, maintain airway via:
 - Manual techniques
 - Suctioning
 - Mechanical techniques

- Inadequate breathing
 - Assist with positive-pressure ventilation
 - Mouth-to-mask device
 - Bag-mask device
 - Flow-restricted, O₂-powered ventilator
 - Give supplemental O₂ via:
 - Nasal cannula
 - Nonrebreather masks
 - Positive-pressure ventilation devices

- Inadequate breathing
 - Get a general impression
 - Respiratory distress
 - Supplemental O₂
 - Possible medication
 - Patient positioning
 - Rapid transport
 - Ongoing assessment for signs of respiratory failure
 - Respiratory failure:
 - Ensure open airway
 - Provide positive-pressure ventilations
Anatomy & Physiology

- Respiratory system - 3 main functions:
 - O₂ from atmosphere to blood
 - CO₂ from blood
 - Voice creation

Anatomy & Physiology

- Airway & alveoli
 - Nose
 - Nasal passage – 1st portion of airway
 - Divided into 2 compartments by nasal septum
 - Functions:
 - Filtering
 - Moistening
 - Warming air before it enters lungs
Anatomy & Physiology

Airway & alveoli
- Pharynx
 - Passage extending from back of nasal airway down to esophagus, larynx
 - Nasopharynx
 - Oropharynx
 - Laryngopharynx

Epiglottis & larynx
- Epiglottis - flap of cartilage that covers larynx during swallowing
- Larynx - contains vocal cords
 - Thyroid cartilage
 - Cricoid cartilage
Anatomy & Physiology

- Airway & alveoli
 - Trachea
 - Extends down from larynx
 - Hollow tube with horseshoe-shaped cartilage rings anteriorly that give support
 - Posterior surface - muscular wall

- Bronchi & bronchioles
 - Bronchi
 - Trachea subdivides into 2 tubes
 - Bronchi subdivide into smaller bronchi
 - Bronchioles
 - Smallest type of airway tube
 - Tubes change diameter as muscle constrict/dilate
Alveoli
- Microscopic air sacs within lung where gas exchange takes place

Lungs & muscles of breathing
- Lungs
 - Formed by bronchi, bronchioles, alveoli
 - Suspended in thoracic cavity
 - Separated by mediastinum
 - Rib, thoracic spine, scapula, muscles surround & provide protection, function
 - Clavicle, neck - superior
 - Diaphragm – inferior
 - Pleurae

Muscles of respiration
- Change diameter of chest cavity as they contract, relax & cause air to move in/out of lungs
- Diaphragm - main muscle of respiration, aided by external intercostals muscles
Anatomy & Physiology

Lungs & muscles of breathing
- Accessory muscles of respiration
 - When more air exchange needed, gives added volume with each breath
 - Muscles of inspiration
 - Muscles of expiration

Anatomy & Physiology

Physiology of respiration
- Minute volume
 - Adequate air amount inhaled/exhaled each minute
 - Normal adult: 6 to 10 L/min
- Alveolar, capillary, cellular exchange
 - Diffusion - movement of molecules from area of higher concentration to area of lower concentration
 - O₂ → alveoli → capillaries
 - CO₂ → capillaries → alveoli

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
Adequate vs. Inadequate Breathing

- **Dyspnea**
 - Difficulty breathing, shortness of breath
 - Common symptom with respiratory emergency

- **Brain most O$_2$-dependent organ**
 - Change in mental status needs positive-pressure ventilation, high O$_2$ concentration

Adequate vs. Inadequate Breathing

- **Respiratory emergencies**
 - Require O$_2$
 - Positive-pressure ventilation

Adequate vs. Inadequate Breathing

- **Respiratory distress**
 - Patient works harder to breathe
 - Signs:
 - ↑ respiratory rate
 - ↑ accessory muscle use
 - Nasal flaring
 - Tripod or bolt upright position
 - Difficulty speaking in complete sentences
 - Agitation or restlessness
Adequate vs. Inadequate Breathing

- Respiratory failure
 - Inadequate ventilation to support life
 - Not able to maintain mental status, display muscle tone
 - Inadequate amount of air to lungs
Adequate vs. Inadequate Breathing

- Respiratory arrest
 - Complete cessation of breathing
 - Can progress to cardiac arrest
 - Can occur from
 - Electrocution
 - Lightning strikes
 - Spinal cord injury

- Signs of adequate & inadequate breathing
 - Determine whether respiratory distress or respiratory failure
 - Treatment differs
 - All patients need supplemental O₂
 - Patients in respiratory failure/arrest need positive-pressure ventilation
Adequate vs. Inadequate Breathing

- Signs of adequate & inadequate breathing
 - Rate of breathing
 - Normal
 - Adult: 12 to 20 breaths/min
 - Child: 15 to 30 breaths/min
 - Infant: 25 to 50 breaths/min
 - Rhythm of breathing
 - Regular
 - Consistent rise & fall of chest
 - Irregular
 - Increasing & decreasing rates, tidal volumes interspersed with periods of no breathing
Adequate vs. Inadequate Breathing

- Signs of adequate & inadequate breathing
 - Quality of breathing
 - Assessment
 - Look for chest/abdominal movements
 - Look for use of accessory muscles
 - Listen for breath sounds
 - Feel air movement through mouth, nose
 - Inspect skin
 - Evaluate mental status

Opening the Airway

- Airway management goals
 - Establish, maintain patent airway
 - Ensure adequate ventilation
 - Ensure adequate oxygenation
Opening the Airway

- Manual techniques
 - 1st step in opening airway
 - Use in conjunction with mechanical techniques
 - Techniques routinely used
 - Head-tilt/chin-lift
 - Jaw thrust

Relaxed tongue causes airway obstruction
Opening the Airway

- Suctioning
 - General considerations
 - Act of introducing soft, rigid catheter into airway to vacuum out liquid and small, solid secretions
 - Check suction equipment regularly
 - Should be capable of removing thick secretions, provide negative pressure of at least 300 mm Hg (80 to 120 mm Hg for children; 100 mm Hg for infants)
Skill 6-1: Suctioning—Rigid Catheter

- Connect rigid catheter to suction line
- Turn on suction unit; ensure presence of negative pressure

Skill 6-1: Suctioning—Rigid Catheter

- Open mouth by cross-finger technique
- Place catheter tip into posterior pharynx

Skill 6-1: Suctioning—Rigid Catheter

- Initiate suctioning by closing hole of rigid catheter or turning on suction device
- Suction from side to side no more than 15 seconds
Skill 6-1: Suctioning—Soft Catheter

- Attach soft catheter
- Measure from corner of mouth to earlobe

Skill 6-1: Suctioning—Soft Catheter

- Insert catheter into oral cavity without suction
- Insert only to base of tongue

Skill 6-1: Suctioning—Soft Catheter

- Apply suction
- Move catheter tip from side to side with twisting motion
- Suction no more than 15 seconds
Opening the Airway

- **Suctioning**
 - Infants & children
 - Use rigid catheter to suction upper airway
 - Do not touch back of airway
 - Become hypoxic with prolonged suctioning
 - Nasal suctioning, use bulb suction device/small, soft catheter with low to medium vacuum

Opening the Airway

- **Mechanical techniques**
 - OPA
 - Elevates tongue away from oropharynx in unconscious patients without gag reflex
 - Curved plastic extends just anterior to lips down to tongue base in oropharynx
Opening the Airway

Skill 6-2: Inserting an OPA

- Measure airway from corner of mouth to angle of jaw

Skill 6-2: Inserting an OPA

- Place index finger of one hand on top teeth, thumb on lower teeth
- Apply pressure in opposite directions
- Insert device into mouth with tip pointing toward roof
Skill 6-2: Inserting an OPA

- Advance OPA along hard palate until you reach soft palate, then rotate into position
- Insert without interruption of ventilation

Once in place, test patency by ventilating or look, listen, feel for breathing

Can also be inserted by restraining tongue with tongue blade
- Insert OPA following normal curvature of mouth & pharynx
Opening the Airway

Mechanical techniques
- NPA
 - Same purpose as OPA, used when OPA not tolerated
 - Gag reflex present
 - Mouth cannot open from trauma/clenching teeth
 - Do not use with severe, direct facial injury, possible skull fracture
 - Extends from nares down to oropharynx

Skill 6-3: Inserting an NPA
- Measure airway from nose to angle of jaw
- Lubricate outside of tube with water soluble gel
Skill 6-3: Inserting an NPA

- Insert with bevel facing toward septum
- Test patency by ventilating patient or look, listen, feel for breathing

Positive-Pressure Ventilation

- Mouth-to-mouth/mouth-to-barrier device
 - Barrier device protects EMT
 - Mouth-to-mask, pocket mask, seals around patients mouth & nose with an air-filled bladder
 - One-way valve prevents exhaled air from reaching EMT
 - Use 2 hands to create mask seal, lung compliance while delivering rescue breath

Positive-pressure Ventilation

- Mouth-to-mask/mouth-to-barrier device
 - Breathe until chest rise over a 1-second period
 - O₂ can be delivered through port on top of mask
 - Pinch patient’s nose, deliver slow breath over 2-seconds through valve filter
 - Pocket mask preferred over face shield
Skill 6-4:
Mouth-to-Mask – No Suspected Spinal Injury

- Position adjacent to head
- Apply mask to face using nose bridge as guide

Skill 6-4:
Mouth-to-Mask – No Suspected Spinal Injury

- Place index finger, thumb of hand closer to top of head along mask border
 - Place thumb of other hand along lower mask margin
 - Place remaining fingers along bony margin of jaw
Skill 6-4:
Mouth-to-Mask – Suspected Spinal Injury

- Position directly above head
- Apply mask to face using nose bridge as guide
- Use thumb, heel to make complete seal

Skill 6-4:
Mouth-to-Mask – Suspected Spinal Injury

- While lifting jaw, squeeze mask with thumbs, hand heels
- Give slow breaths by blowing exhaled air into valve attached to mask

Positive-Pressure Ventilation

- Bag-mask
 - Most common
 - Most unreliable if used improperly
 - O₂ inlet provides increased concentration to patient
 - O₂-collecting reservoir delivers 90% to 100% O₂
Positive-pressure Ventilation

- Bag-mask

- Features
 - Self-refilling disposable bag
 - Non-jamming valve, allows maximum O₂ inlet flow of 15 L/min
 - Standardized fittings of 15 & 22 mm
 - True nonrebreather valve
 - Performs in all environmental extremes

Positive-Pressure Ventilation

Skill 6-5: Bag-Mask Ventilation

- After opening airway, insert oral/nasal device, attach mask
- EMT at head places hand on each side of mask
Skill 6-5: Bag-Mask Ventilation

- Maintaining head-tilt/chin-lift position, EMT at head places mask on patient’s face
 - Creating a seal around nose & mouth

- Connect bag-mask to high-flow O₂
- 2nd EMT squeezes bag, watching for chest rise
- If neck injury, use jaw thrust

- If only 1 EMT, use 1 hand to grasp mask, with thumb & index finger, place mask on patient’s face
 - Use other fingers to bring jaw up to mask
- With other hand, squeeze bag
Positive-Pressure Ventilation

- Cricoid pressure
 - Air can enter esophagus and cause gastric inflation, increase vomiting/aspiration risk
 - Use Sellick maneuver
 - Compress esophagus between cricoid cartilage & thoracic spine

Positive-Pressure Ventilation

- Flow-restricted, O₂-powered ventilation device
 - Provides highest delivered O₂ concentration
 - 100%
Positive-Pressure Ventilation

O₂ Therapy

- O₂, colorless, odorless gas plentiful in environment
- Anyone in respiratory distress/failure receives supplemental O₂
- EMTs carry in tanks/cylinders

O₂ Therapy

- O₂ cylinders
 - Large gas quantity, stored at very high pressure
 - Color-coded green
 - Pin index safety system
O₂ Therapy

- O₂ cylinders
 - Cylinder sizes
 - Smaller - D or E
 - Larger - M, G, H

- Regulators
 - Reduces high gas pressure in cylinder
 - Single-staged
 - Double-staged
 - Pressure gauge
 - Flowmeter records flow rate
O₂ Therapy

- O₂ cylinders
 - Cylinder calculations

 \[
 \text{Time (min)} = \left(\text{Tank pressure [psi]} - 200 \text{ psi} \right) \times \text{Constant} \\
 \text{Flow rate (L/min)}
 \]

Skill 6-6: Setting Up O₂ System

- Confirm cylinder contains O₂
 - Identify color & pin index grouping

- Ensure rubber washer in place at cylinder opening or regulator opening
Skill 6-6: Setting Up O₂ System

- Open main valve at cylinder top slowly until gas comes out; then immediately close valve

Skill 6-6: Setting Up O₂ System

- Attach regulator
 - Align pin index from regulator into cylinder holes
- Tighten clamp

Skill 6-6: Setting Up O₂ System

- Open valve 2 full turns
- Check pressure gauge – should read approximately 2000 psi
- If cylinder leaks, turn off main valve
Skill 6-6: Setting Up O_2 System

- Attach tubing or delivery device to regulator
- Adjust liter flow

Skill 6-6: Setting Up O_2 System

- Attach delivery device to patient

Skill 6-7: Discontinuing O_2 System

- Remove O_2 delivery device from patient
- Turn off O_2 flow
Skill 6-7: Discontinuing O₂ System

- Turn off main valve at top of cylinder

Skill 6-7: Discontinuing O₂ System

- Open flowmeter valve to bleed O₂
- Detach regulator by loosening clamp
- Mark cylinder as empty

O₂ Therapy

- O₂ administration devices
 - When patients are ventilating adequately but in need of supplemental O₂
 - Nasal cannula
 - Low-flow, low-concentration
 - 24% to 40% concentration
 - 2 to 6 L/min flow rate
 - Indications:
 - COPD
 - Asthma
 - Uncomplicated chest pain
 - Dyspnea, hypoxia

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
Skill 6-8: Applying a Nasal Cannula

- Place nasal cannula prongs into nares
- Guide tubing around ears, under chin
- Adjust fit under chin

O₂ Therapy

- O₂ administration devices
 - Nonrebreather mask
 - High-flow, high-concentration
 - Up to 90% concentration
 - 10-15 L/min
 - Indications:
 - Respiratory distress
 - Shock
 - Poor tissue oxygenation
Skill 6-9: Applying a Nonrebreather Mask

- Prefill reservoir bag with O₂ by placing 2 fingers inside mask and closing off valve

Skill 6-9: Applying a Nonrebreather Mask

- Extend elastic strap
- Place mask over patient’s head
- Cinch metal band on nose, adjust strap

O₂ Therapy

- O₂ administration devices
 - Pulse oximetry
 - Monitors O₂ saturation
 - Colorimeter
 - Normal hemoglobin saturation: 93% to 100%
 - More than 95% - good saturation
 - Less than 95% - hypoxia
O₂ Therapy

- O₂ administration devices
 - Pulse oximetry
 - Accuracy affected by:
 - Excessive ambient light
 - Conditions that reduce circulation to peripheral arteries:
 - Cardiac arrest
 - Hypotension
 - Hypothermia
 - Vasodilation drugs
 - CO poisoning

- Humidification
 - Moisturizes inspired O₂
 - Loosens secretions, prevents airway drying
 - Useful in smoke inhalation
 - Prevent contamination of device
Special Patient Populations

- Patients with stomas
 - Permanent/temporary breathing tube or tracheostomy or laryngectomy
 - Obstructed stoma requires suctioning

- If positive-pressure ventilation required:
 - Breathe directly through opening/tube
 - Place infant/child mask directly over stoma
 - Extension of head, neck not necessary
 - Squeeze bag, observe chest rise
 - If you are unable to ventilate through stoma, attempt to breathe through upper airway
 - If patient has a tube coming out of stoma, attach bag-mask device directly to tube

Special Patient Populations
Special Patient Populations

- Infants & children
 - Airway differs from adults
 - Internal diameter - smaller at all levels
 - Tongue larger in relation to airway; greater obstruction risk
 - Narrowest part of airway - ring formed by cricoid cartilage
 - Larynx, trachea cartilage softer
 - Chest wall softer; diaphragmatic breathing

- Differences have practical implications
 - Infants - head placed in sniffing, neutral position
 - Toddlers, small children - neck extended slightly
 - Keep tongue from obstructing airway
 - Small obstructions may cause significant blockage
Special Patient Populations

- Patients with facial injuries
 - Because of rich blood supply to face, blunt injuries cause severe bleeding
 - Makes airway management difficult
 - Have suctioning readily available
 - Bleeding in cheek, mouth controlled with direct pressure
 - Turn head to aid drainage

Special Patient Populations

- Patients with dental appliances
 - Dentures remain in place during airway management
 - Give form to face, help create better seal with mask device
 - If loose, may obstruct airway
 - If dislodged, remove, continue ventilation

Special Patient Populations

- Patients with COPD
 - Ordinary control of ventilatory drive is CO₂ level in blood
 - Have chronic CO₂ buildup from lung disease, brain desensitized to CO₂
 - When patients are severely hypoxic, in shock, or respiratory arrest:
 - Administer high-concentration O₂, monitor for possible respiratory depression/arrest
Airway Obstruction

- Perform BLS procedures
- If unsuccessful × 3 - rapid transport, continue efforts en route

Airway Obstruction

- Choking
 - Death within minutes
 - Tongue obstructs pharynx from lower jaw muscle relaxation
 - Epiglottis blocks airway in unconscious patients
 - Head/facial injury bleeding, vomiting may cause obstruction

Skill 6-10: Adult Choking

- Ask, “Are you choking?”
Skill 6-10: Adult Choking

- Move behind choking victim, place 1 hand on abdomen above umbilicus, below ribs
- Reach around with other hand, grab 1st hand, hold firmly

Skill 6-10: Adult Choking

- Give abdominal thrusts
- Repeat until object expelled or victim becomes unresponsive

Skill 6-10: Adult Choking

- If victim becomes unconscious, help safely to ground
- Perform tongue-jaw lift
Skill 6-10: Adult Choking

- Ventilate patient
- If unsuccessful, start CPR
- Repeat tongue-jaw lift, ventilation, CPR

Airway Obstruction

- Recognition of airway obstruction
 - Mild obstruction
 - Responsive patients cough forcefully with wheezing between coughs
 - Encourage coughing, monitor patient
 - Severe obstruction
 - Weak, ineffective cough
 - High-pitched noises while inhaling
 - ↑ respiratory difficulty
 - Inability to talk
 - Possible cyanosis
 - May clutch neck
 - Provide abdominal thrusts
Airway Obstruction

- Relief of choking
 - Abdominal thrust with victim standing/sitting
 - Stand behind victim, wrap around waist
 - Make fist with 1 hand
 - Grasp fist with other hand
 - Press into victim’s abdomen with quick upward thrusts

Airway Obstruction

- Relief of obstruction
 - Abdominal thrusts with responsive victim lying down
 - Kneel astride thighs
 - Place heel of hand against abdomen, midline slightly above navel, below tip of xiphoid
 - Place other hand directly on top of fist
 - Press with quick upward thrusts

Airway Obstruction

- Relief of obstruction
 - Chest thrusts with victim standing/sitting
 - For late pregnancy, obese patient
 - Stand behind victim, arms directly under armpits, encircle chest
 - Place thumb side of 1 fist on lower half of sternum, avoid xiphoid process, margins of rib cage
 - Grasp fist with other hand, administer backwards thrusts
Airway Obstruction

- Relief of obstruction
 - Chest thrusts with responsive victim lying down
 - For late pregnancy, unconscious obese patient
 - Place patient on back, kneel close to side
 - Hand placement & technique same as CPR chest compressions

- Relief of obstruction
 - Finger sweep & tongue-jaw lift
 - Finger sweep not used with seizures
 - Open mouth, grasp tongue & lower jaw between thumb, fingers lifting mandible
 - Draw tongue/foreign body away from back of throat
 - If you see an object, insert index finger along side cheek deeply into throat to tongue base
 - Use hooking action to dislodge

Airway Obstruction

- Relief of foreign body airway obstruction in unresponsive victim
 - CPR
 - Open airway using tongue-jaw lift, look for object
 - If object seen, remove using finger sweep
 - If object not seen, give rescue breaths & chest compressions
 - If you feel resistance to airflow and have no chest rise:
 - Reopen airway, try again
 - If air does not go in, start CPR
 - Each time you open airway, look for object
Summary

- Respiratory system brings O₂ into body, rids CO₂

- Respiratory system composed of:
 - Nose
 - Mouth
 - Nasopharynx
 - Oropharynx
 - Larynx
 - Epiglottis
 - Trachea
 - Bronchi
 - Bronchioles
 - Alveoli
 - Lungs

Summary

- Diaphragm, chest muscles cause thoracic cavity to expand/contract, create airflow during ventilation
 - Inhalation when diaphragm, intercostal muscles contract, enlarge thoracic cavity
 - Exhalation when diaphragm, intercostals relax, decrease thoracic cavity size

- O₂ & CO₂ exchange occurs at alveoli & capillaries through diffusion

- Accessory muscles help increase respiratory volumes during exercise, respiratory disease

Summary

- Inadequate breathing - respiratory rate outside of normal, irregular rhythm, abnormal breathing quality
 - Pale, cool, cyanotic skin
 - Retractions
 - Nasal flaring
 - Seesaw breathing
 - Agonal respirations
Summary

- Respiratory distress requires increased work of breathing
 - Increased respiratory rate
 - Accessory muscle use
 - Nasal flaring
 - Position to aid breathing (tripod or bolt upright)

- Respiratory failure - inadequate ventilation to support life & cannot maintain mental status/muscle tone; needs positive-pressure ventilation

- Respiratory arrest - complex cessation of breathing
 - Can progress to respiratory/cardiac arrest

Summary

- Airway opened by using head-tilt/chin-lift/jaw thrust

- Suctioning used to clear liquid, small solid secretions with soft/rigid catheter
 - Never suction >15 sec

- OPA used for unconscious patient with no gag reflex

- NPA for patients who will not tolerate OPA

Summary

- Mouth-to-mask ventilation reliable, allows EMT to create mask seal with 2 hands, feel chest wall compliance, administer supplemental O₂

- Bag-mask ventilation most common

- Cricoid pressure used to compress esophagus, prevent gastric inflation during positive-pressure ventilation
Summary

- Positive-pressure ventilation provided using:
 - Mouth-to-mask
 - Bag-mask
 - Flow-restricted, O₂-powered ventilation device
- O₂ stored in green steel/aluminum cylinders, used with regulators
- 2 most common free-flow O₂ devices include nasal cannula & nonrebreather mask

Summary

- Pulse oximetry assesses O₂ saturation in blood
- When delivering O₂ with COPD, prepare to assist with ventilations
- Laryngectomy/stoma ventilated directly through opening in neck
- BLS airway obstruction procedures used to clear foreign object

Summary

- Choking in adults usually occurs during eating
- Severe airway obstruction signs:
 - Weak, ineffective cough
 - High-pitched noises while inhaling
 - Increased respiratory difficulty
 - Inability to talk
 - Possible cyanosis
Summary

- Abdominal thrusts recommend for choking relief
- When treating COPD patients, administer O₂; closely monitor ventilations

Questions?