Chapter 32
Hematology

Learning Objectives
• Describe the physiology of blood and its components
• Discuss the pathophysiology and signs and symptoms of specific hematological disorders.
• Outline the general assessment and management of patients with hematological disorders.
Blood and Blood Components

- Blood composed of cell and formed elements surrounded by plasma
 - 95 percent volume of formed elements consists of red blood cells (RBCs; erythrocytes)
 - 5 percent consists of white blood cells (WBCs; leukocytes) and cell fragments (platelets)

Blood and Blood Components

- Continuous blood movement keeps formed elements dispersed throughout plasma
 - Where available to carry out chief functions
 - Delivery of substances needed for cellular metabolism in tissues
 - Defense against invading microorganisms and injury
 - Acid-base balance
Blood and Blood Components

- Blood cells formed within red bone marrow
 - Present in all tissues at birth
- Adult red bone marrow primarily found in membranous bone
 - Vertebrae, pelvis, sternum, ribs
- Yellow marrow produces some white cells
 - Composed mainly of connective tissue and fat

Blood and Blood Components

- Other blood-forming organs
 - Lymph nodes
 - Produce lymphocytes and antibodies
 - Spleen
 - Stores large quantities of blood
 - Produces lymphocytes, plasma cells, antibodies
 - Liver
 - Blood-forming organ only during intrauterine life
 - Plays important role in coagulation process

Plasma

- Clear portion of blood, is about 92 percent water
- Contains three important proteins
 - Albumin
 - Most plentiful protein
 - Similar to egg white
 - Gives blood gummy texture
 - Keeps water concentration low so water diffuses readily from tissues into blood
Plasma

- Contains three important proteins
 - Globulins (alpha, beta, and gamma)
 - Transport other proteins
 - Provide immunity to disease
 - Fibrinogen
 - Responsible for blood clotting
 - Maintaining blood pH (acting as either acid or base)
 - Transporting fat-soluble vitamins, hormones, carbohydrates
 - Allowing body to digest them temporarily for food

Red Blood Cells

- Most abundant cells in body
 - Primarily responsible for tissue oxygenation
 - Appear as small rounded disks with nearly hollowed-out centers
 - Comprised mainly of water and red protein hemoglobin

Red Blood Cells

- Production continues throughout life
 - Replace blood cells that grow old and die, killed by disease or lost through bleeding
 - After production occurs in marrow, new cell divides until there are 16 RBCs
 - Cells produce hemoglobin protein until concentration of protein becomes 95 percent of dry weight of cell
 - Cell expels nucleus, giving cell its characteristic pinched look
 - New shape increases surface area of cell and oxygen-carrying potential
Red Blood Cells

- Life span of about 120 days
 - As aging occurs, internal chemical machinery weakens
 - Lose elasticity
 - Become trapped in small blood vessels in bone marrow, liver, spleen
 - Destroyed by specialized WBCs (macrophages)
 - Most components of destroyed hemoglobin molecules used again
 - Some broken down to waste product bilirubin

Red Blood Cells

- Each RBC contains about 270 million hemoglobin molecules
 - Each molecule carries 4 oxygen molecules
- Normal amount of hemoglobin about 15 g/100 mL
 - Normally a little higher in males than in females
- Number of RBCs is about 4.2 to 6.2 million cells/mm²
White Blood Cells

• Arise from bone marrow
 – Released into bloodstream
 – Destroy foreign substances (e.g., bacteria and viruses)
 – Clear bloodstream of debris

• Leukocyte production increases in response to infection
 – Causes elevated WBC count in blood
 – Bone marrow and lymph glands continually produce and maintain reserve
 – Not many WBCs in healthy bloodstream

• Normal WBC count is about 5,000 to 10,000 cells/mm²
 – Monocytes make up about 5 percent of total WBC count
 – Increase with chronic infections
 – Lymphocytes account for about 27.5 percent
 – Neutrophils about 65 percent
 – Eosinophils and basophils together about 2.5 percent
White Blood Cells

- Increased WBC count is specific for various illnesses
 - Bacterial infection
 - Inflammation
 - Leukemia
 - Trauma
 - Stress

White Blood Cells

- Differential count (also called diff)
 - Identifies different types of leukocytes present in blood
 - Test performed by
 - Spreading drop of blood on microscope slide
 - Staining slide
 - Examining under microscope

White Blood Cells

- Differential count (also called diff)
 - Identified by
 - Shape and appearance of nucleus
 - Color of cytoplasm
 - Presence and color of granules
 - Percentage of each cell type is reported
 - Red cells and platelets are examined for abnormalities in appearance
What body functions are impaired if the WBC number or function is diminished?

Platelets

• Platelets (thrombocytes) are small, sticky cell fragments
 – Important role in blood clotting
 – When blood vessel is cut
 • Travel to site and swell into odd, irregular shapes
 • Adhere to damaged wall
 • Plug the leak
 • Allow other cells to stick and form clot

• Platelets (thrombocytes) are small, sticky cell fragments
 – If damage is too great, platelets chemically signal complex clotting process or clotting cascade
 • Repair millions of ruptured capillaries each day
 • Often make rest of clotting cascade unnecessary
Hemostasis

- Initial physiological response to wounding, causes bleeding to cease
- Initiated when break in integrity of vascular endothelium

Hemostasis

- Vascular reaction or physiology of hemostasis involves
 - Vasoconstriction
 - Resulting from injury is rapid but temporary
 - In response to injury, severed blood vessels constrict and retract with aid of surrounding subcutaneous tissues
 - Vessel spasm slows blood loss immediately
 - Usually sustained as long as 10 minutes
 - Blood coagulation mechanisms activated to produce clot

Hemostasis

- Vascular reaction or physiology of hemostasis involves
 - Formation of platelet plug
 - Adhere to injured vessels and collagen in connective tissue that surrounds injured vessel
 - Contact collagen, they swell, become sticky, and secrete chemicals that activate other surrounding platelets
 - Process causes platelets to adhere to one another
 - If opening in wall is small, plug may be sufficient to stop blood loss completely
 - If opening is large, a blood clot is necessary to arrest blood flow
Hemostasis

- Vascular reaction or physiology of hemostasis involves
 - Coagulation
 - Growth of fibrous tissue into clot that permanently closes and seals injured vessel

Hemostasis

- Coagulation occurs as result of chemical process that begins within seconds of severe vessel injury
 - Progresses rapidly; within 3 to 6 minutes after vessel rupture, entire end of vessel filled clot
 - Within 30 minutes, clot retracts and vessel is sealed further

Hemostasis

- Coagulation occurs as result of chemical process that begins within seconds of severe vessel injury
 - Clotting mechanism is complex process and includes three mechanisms
 - Prothrombin activator is formed in response to rupture or damage of blood vessel
 - Prothrombin activator stimulates conversion of prothrombin to thrombin
 - Thrombin in presence of calcium ions act as enzyme to convert fibrinogen into fibrin threads
 - Threads entrap platelets, blood cells, and plasma to form clot
Hemostasis

- Process of hemostasis usually is protective and required for survival
 - Can result in responses that threaten life and function
 - Myocardial infarction or stroke

Specific Hematological Disorders

- Disorders include
 - Anemia
 - Leukemia
 - Leukopenia
 - Lymphomas
 - Polycythemia
 - Disseminated intravascular coagulopathy
 - Hemophilia
 - Sickle cell disease
 - Multiple myeloma
Specific Hematological Disorders

• Anemia
 – Condition in which concentration of hemoglobin or erythrocytes is below normal
 – Precipitating causes
 • Chronic or acute blood loss
 • Decreased production of erythrocytes
 • Increased destruction of erythrocytes
 – Symptom of disease

Specific Hematological Disorders

• Anemia
 – Persons at greatest risk are those with
 • Chronic kidney disease
 • Diabetes
 • Heart disease
 • Cancer
 • Chronic inflammatory conditions
 • Persistent infections
 – Conditions interfere with production of oxygen-carrying RBCs

Iron Deficiency Anemia

• Iron is critical part of a hemoglobin molecule
 – Gives ability to bind oxygen
 – Lack of iron prevents bone marrow from making enough hemoglobin for RBCs
 • RBCs produced are small and have pale center
 • Reduced oxygen-carrying capacity
Iron Deficiency Anemia

• Most common causes
 – Blood loss from menstrual bleeding or intestinal bleeding
 – Diet low in iron usually is cause in children
 – Vitamin deficiencies can produce anemia
 • Lack of folic acid (B vitamins) is most common form of vitamin-deficiency

Can you predict the signs and symptoms of anemia?
Hemolytic Anemia

• Cause
 – Premature destruction of RBCs in blood (hemolysis) causes hemolytic anemia
 • Can result from inherited disorder inside RBC
 • Can result from disorder outside cell
 • Condition usually acquired later in life

Inherited Disorders

• Hemolysis
 – Can occur as result of abnormal rigidity of cell membrane
 • Causes cell to become trapped at an early stage of its life span in smaller blood vessels (usually of spleen)
 • In these smaller blood vessels, RBC is destroyed by macrophages

• Hemolysis
 – Can occur from genetic defect in hemoglobin within cell (e.g., sickle cell anemia and thalassemia)
 – Can occur from defect in one of the enzymes in cell that helps protect cell from chemical damage during infectious illness
 • Deficiency glucose-6-phosphate dehydrogenase is common in African-Americans
Acquired Disorders

• Acquired hemolytic anemia results from
 – Disorders in which normal RBCs are disrupted as result of mechanical forces
 • Abnormal blood vessel linings
 • Blood clots
 – Autoimmune disorders
 • Can destroy RBCs with antibodies that are produced by immune system
 • Drug-induced hemolytic anemia
 • Incompatible blood transfusion
 – Conditions that can cause hemolytic anemia when RBCs are destroyed by microorganisms in blood (e.g., malaria)

Signs and Symptoms of Anemia

• All forms of anemia share signs and symptoms
 – Fatigue and headaches
 – Sore mouth or tongue
 – Brittle nails
 – Breathlessness and chest pain

Signs and Symptoms of Anemia

• Other patient complaints are related to abnormal decrease in number of WBCs (leukopenia) or reduction in platelets (thrombocytopenia) and may include
 – Bleeding from mucous membranes
 – Cutaneous bleeding
 – Fatigue
 – Fever
 – Lethargy
Diagnosis and Treatment

• Diagnostic tools
 – Signs and symptoms
 – Patient history
 – Examination of patient's blood through blood tests and bone marrow biopsy
 – Example
 • Iron deficiency anemia usually reveals RBCs that are smaller than normal
 • Hemolytic anemia shows RBCs that are immature and abnormally shaped

• Treatment
 – Indicated to correct, modify, or diminish mechanism or process leading to defective RBC production or reduced RBC survival

Leukemia

• Refers to any of several types of cancer in which abnormal proliferation of WBCs usually occurs in bone marrow
 – Excess production of leukemic cells crowds and impairs normal production of RBCs, WBCs, and platelets
 – More common in males than females
 – More common in Caucasians than African-Americans
 – In 2008, about 46,000 American were diagnosed (2,500 of them children)
Leukemia

- Exact cause is not known
 - Genetics may play role
 - Abnormal chromosomes associated with congenital disorders (e.g., Down’s syndrome) and HIV-type viruses are associated with rare form of disease
- Other factors
 - Exposure to radiation
 - Viral infections
 - Immune defects
 - Various chemicals in home and work environments

Leukemia Classifications

- Classified as acute or chronic
 - Acute
 - Cancer cells begin proliferating at early stage of their development (arrested as immature cells)
 - Chronic
 - Implies abnormal proliferation of more mature but not fully differentiated cells
 - Classified further according to type of WBC involved
Leukemia Classifications

• Two common forms of leukemia
 – Acute lymphocytic leukemia
 • Affects mostly children under age 15
 • Sometimes called childhood leukemia
 – Acute myelogenous leukemia
 • Affects mostly middle-aged adults

Leukemia Classifications

• Two common forms of leukemia
 – In both types, abnormal WBCs are produced in such large amounts that they eventually accumulate in vital organs (liver, spleen, lymph, brain)
 • Impedes function of these organs and leads to death
 – Chronic forms of leukemia can develop slowly, often over many years
 • Often are discovered by chance during routine blood analysis

Leukemia Signs and Symptoms

• Proliferation of leukemic cells or resulting inadequate production of other normal blood cells makes patient highly susceptible to
 – Serious infections
 – Anemia
 – Bleeding episodes
Leukemia Signs and Symptoms

- Signs and symptoms
 - Abdominal fullness
 - Bleeding
 - Bone pain
 - Elevated body temperature and diaphoresis
 - Enlargement of lymph nodes

- Enlargement of the liver, spleen, and testes
- Fatigue
- Frequent bruising
- Headache
- Heat intolerance
- Night sweats
- Weight loss

If a child presents with a lot of unusual bruises, what would you suspect if a diagnosis of leukemia is not known?

Leukemia Diagnosis and Treatment

- Diagnosis
 - Confirmed by bone marrow biopsy
- Severity assessed by
 - Degree of liver and spleen enlargement
 - Anemia
 - Lack of platelets in blood
Leukemia Diagnosis and Treatment

- Treatment: acute
 - Transfusion of blood and platelets
 - Antibiotic therapy to manage anemia and infection
 - Anticancer drugs
 - Radiation
 - Bone marrow transplant
- Treatment: chronic leukemia
 - Managed effectively with medication
 - Many patients require no treatment in its early stages

Lyphomas

- General term applied to any neoplastic disorder of lymphoid tissue
 - Hodgkin’s disease is one type
 - All others are called non-Hodgkin’s lymphomas
 - All lymphomas are malignant (cancerous tumors that tend to metastasize)

Hodgkin’s Disease

- Characterized by painless, progressive enlargement of lymphoid tissue found mainly in lymph nodes and spleen
 - Left unchecked, cancer cells multiply and eventually displace healthy lymphocytes
 - Suppresses immune system
Hodgkin’s Disease

• Signs and symptoms
 – Swollen lymph nodes in neck, armpits, groin
 – Fatigue
 – Chills
 – Night sweats
 – Sometimes itching, persistent cough, weight loss, shortness of breath, chest discomfort

Hodgkin’s Disease

• Rare cancer of unknown cause that may have heritable component
 – More common in males than females
 – Peak incidence in persons in their 20s and in persons between 55 and 70 years of age
 – Confirmed by identification of Reed-Sternberg cells in lymph nodes or organs affected by cancer
Hodgkin’s Disease

- Treatment
 - Depends on level of lymph node and organ system involvement (stage of disease)
 - Can consist of radiation and chemotherapy with anticancer drugs
 - Hodgkin’s disease is one of most curable cancers

Non-Hodgkin’s Lymphomas

- Vary in their malignancy according to nature and activity of abnormal cells
 - At least 10 types of non-Hodgkin’s lymphoma identified
- Ranked as low, intermediate, high grade
 - Ranking based on how aggressively disease behaves
 - Low-grade
 - Progress slowly
 - Tend not to spread beyond lymphatic system
 - High-grade
 - Can spread to distant organs within few months

Non-Hodgkin’s Lymphomas

- Signs and symptoms
 - Painless swelling of one or more groups of lymph nodes
 - Enlargement of liver and spleen
 - Fever
 - In rare cases, abdominal pain and GI bleeding
Non-Hodgkin’s Lymphomas

• Cause largely unknown
 – Burkitt’s lymphoma
 • Childhood cancer
 • In Africa, strongly associated with infection by Epstein-Barr virus
 – Other types worldwide have been linked to infection by HIV-type viruses and other conditions that affect immune system

Non-Hodgkin’s Lymphomas

• Treatment
 – Radiation therapy
 – Anticancer drugs
 – Sometimes bone marrow transplantation

Polycythemia

• Increase in total RBC mass of blood
 – May be natural response to chronic hypoxia (secondary polycythemia)
 – May occur for unknown reasons (primary polycythemia)
 – Can result from dehydration (apparent polycythemia)
 • RBC production does not exceed upper limits of normal
Secondary Polycythemia

- Can be naturally present in persons who live in or visit areas of high altitude
 - Due to reduced air pressure and low O₂
 - When O₂ supply to blood is reduced, kidneys produce hormone erythropoietin
 - Stimulates RBC production in bone marrow to make up for reduced O₂ supply
 - Result is increase in oxygen-carrying efficiency of blood

Secondary Polycythemia

- RBC numbers return to normal when person returns to sea level
 - Can be present in heavy smokers
 - Can be caused by chronic bronchitis and conditions that increase erythropoietin production (e.g., liver cancer and some kidney disorders)

Primary Polycythemia

- Also known as polycythemia vera
 - Rare disorder of bone marrow
 - Increased production of RBCs causes blood to thicken
 - Primarily develops in persons 50 or older
Primary Polycythemia

- Can lead to several physiological problems:
 - Blurred vision
 - Dizziness
 - Generalized itching
 - Headache
 - Hypertension
 - Red hands and feet; red-purple complexion
 - Splenomegaly

Other complications
- Platelet disorders, which cause bleeding or clot formation
- Stroke
- Development of other bone marrow diseases (e.g., leukemias)

Treatment
- Phlebotomy
 - Slow removal of blood through vein
- Anticancer drug therapy
 - Controls overproduction of RBCs in marrow
Disseminated Intravascular Coagulopathy

• Complication of severe injury, trauma, or disease
• Common abnormal clotting disorder
 – Most often seen in critical care setting
 – Disrupts balance among
 • Procoagulants
 • Inhibitors
 • Thrombus formation
 • Lysis

Disseminated Intravascular Coagulopathy

• Signs and symptoms
 – Dyspnea
 – Bleeding
 – Those associated with hypotension and hypoperfusion

Disseminated Intravascular Coagulopathy

• Occurs in two phases
 – First phase characterized by
 • Free thrombin in blood
 • Fibrin deposits
 • Aggregation of platelets
 – Second phase characterized by
 • Hemorrhage caused by depletion of clotting factors
Disseminated Intravascular Coagulopathy

- Clinical consequences predispose patient to multiple-system organ failure from bleeding and coagulation disorders caused by
 - Loss of platelets and clotting factors
 - Fibrinolysis
 - Fibrin degradation interference
 - Small vessel obstruction, tissue ischemia, RBC injury, and anemia from fibrin deposits

Disseminated Intravascular Coagulopathy

- Confirmed through laboratory tests

- Treatment
 - Aimed at reversing underlying illness or injury that triggered event
 - In effort to control depletion of clotting factors, in-hospital care includes
 - Replacement of platelets
 - Coagulation factors
 - Blood
 - At same time, attempts are made to manage primary process
Hemophilia

• Refers to a medical condition that causes uncontrolled bleeding and loss of bleeding control mechanisms
 – Group of inherited bleeding disorders
 – Hemophilia A is due to a deficiency in factor VIII
 • Factor essential to process of blood clotting
 – Hemophilia B is caused by a deficiency of factor IX
 • Also is known as Christmas disease
 – All types present with similar problems
 • Specific factor involved determines severity of bleeding
 – About 18,000 people in U.S. have hemophilia
 • About 400 are born with disorder each year

Hemophilia

• Bleeding from hemophilia can occur spontaneously, even after minor injury
 – Can occur during some medical procedures (e.g., tooth extraction)
 – Hemorrhage can occur anywhere in body

Hemophilia

• Bleeding from hemophilia can occur spontaneously, even after minor injury
 – Most common sites
 • Joints
 • Deep muscles
 • Urinary tract
 • Intracranial sites
 – Head trauma is potentially life threatening
 – CNS bleeding is major cause of death for patients in all age groups
Hemophilia

- Controlled by infusions of concentrates of factor VIII
 - Can be administered by patient
 - Serious or unusual bleeding often requires hospitalization
 - Patients are advised to avoid activities that may increase risk of injury
 - Most patients are knowledgeable about their disease
 - Most seek emergency care only when complicated problems and trauma-related issues arise

Imagine that you are caring for a patient with hemophilia who has fallen 15 feet from a ladder. This patient refuses care and transportation. What should you do?

Thrombocytopenia

- Low platelet count
 - In healthy people, blood normally contains 150,000 to 450,000 platelets/microliter of blood
 - At levels of 20,000 to 30,000 platelets/microliter of blood, bleeding can occur with relatively minor trauma
 - At levels less than 20,000 platelets/microliter of blood, spontaneous bleeding can occur, increasing risk for shock and death
 - Especially true if bleeding occurs in brain
 - Bleeding on skin is usually first sign of low platelet count
Thrombocytopenia

- Bleeding of skin may appear as
 - Small red or purple spots on skin (petechiae), often on lower legs
 - Purple, brown, red bruises (purpura) that happen easily and often
 - Prolonged bleeding, even from minor cuts
 - Bleeding or oozing from mouth or nose, especially nosebleeds or bleeding from brushing teeth
 - Unusually heavy menstrual flow

Thrombocytopenia

- Can occur when body either doesn’t produce enough platelets
 - If too many platelets are destroyed
 - If spleen holds on to too many platelets

Thrombocytopenia

- Often associated with
 - Leukemia or lymphoma
 - Aplastic anemia
 - Vitamin B12 or folic acid deficiency anemias
 - Enlarged spleen
 - Infectious diseases such as HIV/AIDS
 - Massive blood transfusions
Thrombocytopenia

- Two diseases that occur because of increased destruction of platelets
 - Idiopathic thrombocytopenic purpura (ITP)
 - Occurs when antibodies attack and destroy body's platelets for unknown reasons
 - In children, can be acute condition that occurs after infection
 - Acute ITP is rare in adults
 - Chronic ITP most frequently affects women ages 20 to 40 years

- Thrombotic thrombocytopenic purpura (TTP)
 - Life-threatening disease that occurs when small blood clots form suddenly throughout body
 - Can result in cardiac hemorrhage and death
 - Occurs more often in women and is associated with pregnancy, metastatic cancer, chemotherapy, HIV/AIDS, some prescription drugs
 - Patients experience kidney failure or decreased kidney function, fever, neurological complications

Thrombocytopenia

- Treatment depends on cause and severity
 - Some only require careful monitoring of platelet counts
 - More serious cases
 - Corticosteroids (prednisone)
 - Transfusion of platelets
 - Rarely, surgical removal of spleen
Sickle Cell Disease

- Inherited blood disorder that affects red blood cells
- Several types, most common is sickle cell anemia
- Debilitating and unpredictable genetic illness

Sickle Cell Disease

- Affects persons of African descent, and less commonly, persons of Mediterranean origin
 - 1 in 12 African-Americans
 - More than 70,000 Americans of different ethnic origins have disease
 - In U.S., about 1,000 are born with disease each year
 - 12.5 million Americans have sickle cell trait

Sickle Cell Disease

- Signs and symptoms
 - Delayed growth, development, and sexual maturation in children
 - Jaundice
 - Priapism in adolescent and adult males
 - Splenomegaly
 - Stroke
Sickle Cell Pathophysiology

- Produces abnormal type of hemoglobin called hemoglobin S
 - Abnormal type has inferior oxygen-carrying capacity
 - When hemoglobin S is exposed to low O₂ states, it crystallizes
 - Distorts RBCs into sickle shape
 - Sickle-shaped cells are fragile and easily destroyed
 - Unable to pass easily through tiny blood vessels and block flow to various organs and tissues
 - This causes vasoocclusive sickle cell crisis that can be life threatening

Sickle Cell Pathophysiology

- As fewer RBCs pass through congested vessels, tissues and joints become starved for O₂ and other nutrients
 - Causes excruciating pain
Sickle Cell Pathophysiology

- Signs and symptoms
 - Increased weakness
 - Aching
 - Chest pain with shortness of breath
 - Sudden and severe abdominal pain
 - Bony deformities
 - Icteric (jaundice) sclera
 - Fever
 - Arthralgia (joint pain)
How do you think a client with such chronic pain must feel at the beginning of a sickle cell crisis?

Sickle Cell Pathophysiology

- Sickle cell crisis
 - Can occur in any part of body
 - Can vary in intensity from one person to next and from one crisis to next
 - Over time can destroy spleen, kidneys, gallbladder, other organs
 - May occur for no apparent reason

Sickle Cell Pathophysiology

- It also may be triggered by
 - Dehydration
 - Exposure to extremes in temperature
 - Infection
 - Lack of O₂
 - Strenuous physical activity
 - Stress
 - Trauma
Sickle Cell Pathophysiology

• 3 less common types of sickle cell crisis
 – Aplastic
 • Bone marrow temporarily stops producing RBCs
 – Hemolytic
 • RBCs break down too rapidly to be replaced adequately
 – Splenic sequestration
 • Childhood difficulty that occurs when blood becomes trapped in spleen
 • Causes organ to enlarge and may lead to death

Sickle Cell Management

• No cure exists
• Because of eventual damage to spleen
 – Patients are at increased risk for septicemia if infected by certain types of bacteria
 – Children with disease should be current with all immunizations

Sickle Cell Management

• When in crisis, require prompt treatment with
 – O₂ if hypoxic
 – IV therapy to manage dehydration
 – Antibiotics to manage infection
 – Analgesics (e.g., morphine) to manage pain
Sickle Cell Management

- In severe cases, blood transfusion may be indicated
 - Effect temporary replacement of hemoglobin S
 - Can be advised during pregnancy to reduce risk of a crisis that can be fatal to mother and fetus
 - May be advised before surgery because anesthesia can be hazardous to those with disease

Multiple Myeloma

- Malignant neoplasm of bone marrow
 - Tumor, composed of plasma cells, destroys bone tissue (especially in flat bones)
 - Causes
 - Pain
 - Fractures
 - Hypercalcemia
 - Skeletal deformities

- Neoplastic cells produce large amounts of protein (M protein) that affect viscosity of blood
- Masses of coagulated protein can accumulate within tissues and impair function
Multiple Myeloma

• Some patients die of kidney failure
 – Kidneys fail because of buildup of proteins that infiltrate kidneys and block renal tubules
 – In many ways, resembles leukemia
 – Plasma cell proliferation generally is confined to bone marrow

Multiple Myeloma

• Other associated disorders
 – Proteinuria
 – Anemia
 – Weight loss
 – Pulmonary complications from rib fracture
 – Recurrent infections from suppression of immune system

Multiple Myeloma

• Patient complaints
 – Weakness
 – Skeletal pain
 – Hemorrhage
 – Hematuria
 – Lethargy
 – Weight loss
 – Frequent fractures
Multiple Myeloma

- Occurs rarely before 40 years of age, then occurs increasingly with age
 - Disease is more common in males than females and may have heritable component
- Diagnosed through
 - X-ray films
 - Blood studies
 - Tumor biopsy

Multiple Myeloma

- Treatment
 - Chemotherapy with anticancer drugs
 - Radiation
 - Plasma exchange
 - Bone marrow transplantation

General Assessment and Management

- Most patients are knowledgeable about their disease
 - Often call EMS to help manage “change” in their condition
 - May call to arrange for transportation to an emergency department for physician evaluation
 - Situations that invoke call for emergency care vary by patient and disease
 - Common chief complaints can be classified by body system
Prehospital Care

- Mainly supportive, must perform
 - General assessment
 - Focused history
 - Focused physical examination
 - Will guide patient care
 - Will help determine appropriateness of emergency transport
- Some patients will have complex medical histories
 - When possible, should be transported to primary hospital where they usually receive medical care

Prehospital Care

- Patient may have variety of complaints and physical findings
 - Some may be vague
 - Can further complicate assessment

Prehospital Care

- After ensuring adequate airway, ventilatory, circulatory status
 - Assess vital signs
 - Perform physical examination
 - Assess skin for color and turgor, noting any cyanosis or jaundice, warmth or coolness, bruising, edema, or ulcerations
Prehospital Care

- Ascertain any new onset of
 - Fever
 - Weakness
 - Cough
 - Rash
 - Spontaneous bleeding (e.g., bleeding gums, epistaxis)
 - Vomiting
 - Diarrhea

- Some hematological disorders can involve ability of blood to deliver enough oxygen to tissues
 - Question all patients with hematological disorders specifically about
 - Recent dizziness
 - Syncope
 - Difficulty breathing
 - Heartbeat irregularities

- Other key elements
 - Identify existing hematological disease
 - Including any family history of hematological disease
 - Significant medical history or recent injury
 - Medication use
 - Allergies
 - Alcohol or illicit drug use
Prehospital Care

- Based on patient’s condition, prehospital care:
 - O₂ administration
 - IV fluid replacement
 - Antidysrhythmics
 - Analgesics for pain management
 - Some of these patients will be gravely ill
 - Calming and comfort measures for patient and family

Summary

- Blood is composed of cells and formed elements surrounded by plasma
 - About 95 percent of volume of formed elements consists of RBCs (erythrocytes)
 - Remaining 5 percent consists of WBCs (leukocytes) and cell fragments (platelets)

Summary

- Anemia is condition in which amount of hemoglobin or erythrocytes in blood is below normal
 - Two common forms of anemia are iron deficiency anemia and hemolytic anemia
 - All forms of anemia share signs and symptoms
 - Include fatigue and headaches, sometimes a sore mouth or tongue, brittle nails, and, in severe cases, breathlessness and chest pain
 - Diagnosis is made by history and from blood tests and bone marrow biopsy
Summary

• Leukemia refers to any of several types of cancer in which abnormal proliferation of WBCs usually occurs in bone marrow
 – Proliferation of leukemic cells crowds and impairs normal production of RBCs, WBCs, and platelets
 – Leukemia is classified as acute or chronic
 – Proliferation of leukemic cells makes the patient highly susceptible to serious infections, anemia, and bleeding episodes
 – Diagnosis is confirmed by bone marrow biopsy

Summary

• Lymphoma refers to a group of diseases that range from slowly growing chronic disorders to rapidly evolving acute conditions
 – Hodgkin’s disease is one type; all others are called non-Hodgkin’s lymphomas

Summary

• Polycythemia is characterized by an unusually large number of RBCs in blood as a result of their increased production by bone marrow
 – Polycythemia may be natural response to hypoxia
 • Known as secondary polycythemia
 – Polycythemia also may occur for unknown reasons
 • Known as primary polycythemia
Summary

• Disseminated intravascular coagulopathy is a complication of severe injury, trauma, or disease
 – Disrupts balance among procoagulants, thrombin formation, inhibitors, and lysis
 – Signs and symptoms of disseminated intravascular coagulation include dyspnea, bleeding, and those associated with hypotension and hypoperfusion
 – Treatment aimed at reversing underlying illness or injury that triggered event

Summary

• Hemophilia A is caused by deficiency of blood protein called factor VIII
 – Hemophilia B is caused by deficiency of factor IX
 – Bleeding from hemophilia can occur spontaneously, after even minor injury, or during some medical procedures

Summary

• Thrombocytopenia is a low platelet count
 – Can occur when body either doesn’t produce enough platelets; if too many platelets are destroyed; or if spleen holds on to too many platelets
 – Bleeding is chief complication of thrombocytopenia
Summary

- Sickle cell disease is a debilitating and unpredictable recessive genetic illness
 - Affects persons of African descent
 - Less often, affects persons of Mediterranean origin
 - Sickle cell anemia produces abnormal type of hemoglobin
 - Called hemoglobin S
 - Has inferior oxygen-carrying capacity
 - Complications include episodes of severe pain, fatigue, pallor, jaundice, stroke, delayed growth, hematuria, priapism, and splenomegaly

Summary

- Multiple myeloma is a malignant neoplasm of the bone marrow
 - Tumor destroys bone tissue (especially flat bones) and causes pain, fractures, hypercalcemia, and skeletal deformities
- In many cases of hematological disorders, prehospital treatment is supportive
 - Treatment includes ensuring adequate airway, ventilatory, and circulatory support

Questions?