Chapter 42
Chest Trauma

Learning Objectives

• Discuss mechanism of injury associated with chest trauma.
• Describe the mechanism of injury, signs and symptoms, and management of skeletal injuries to the chest.
• Describe the mechanism of injury, signs and symptoms, and prehospital management of pulmonary trauma.
Learning Objectives

• Describe the mechanism of injury, signs and symptoms, and prehospital management of injuries to the heart and great vessels.
• Outline the mechanism of injury, signs and symptoms, and prehospital care of the patient with esophageal and tracheobronchial injury and diaphragmatic rupture.

Skeletal Injury

• May be caused by blunt and/or penetrating trauma
• Thoracic cage protects vital organs within chest
 – Prevents collapse of thorax during respiration

Skeletal Injuries

• Skeletal components of the thoracic cage
 – 12 thoracic vertebrae
 – 12 ribs (with their associated costal cartilages)
 – Sternum
 • Superior 7 ribs (true ribs) are attached by cartilage to sternum
 • Inferior 5 ribs (false ribs) articulate with vertebrae, but do not attach directly to sternum
 • Ribs 8, 9, 10 are joined to common cartilage, which is attached to sternum
 • Ribs 11 and 12 are “floating ribs,” no attachment to sternum
Skeletal Injury

• Sternum has three parts
 – Manubrium
 • Jugular notch is located at superior end
 • Joins body of sternum at sternal angle (angle of Louis)
 – Body
 – Xiphoid process
• Clavicles are part of appendicular skeleton
 – Attach upper limbs to the axial skeleton
 – Made at sternoclavicular joint between clavicles and sternum

Clavicular Fractures

• Clavicle accounts for 5 percent of all fractures and is most frequently fractured bone in children
 – Isolated clavicular fracture is seldom significant injury
 – Common in children who fall on their shoulders or outstretched arms
 – Common in athletes involved in contact sports
 – Treatment usually involves applying clavicle strap or sling and swathe that immobolizes affected shoulder and arm
 – Usually heal well within 4 to 6 weeks
Clavicular Fractures

- Signs and symptoms
 - Pain
 - Point tenderness
 - Evident deformity
- Rare complication is injury to subclavian vein or artery
 - Vascular injury can occur when bony fragments from fracture puncture vessel
 - Results in hematoma or venous thrombosis

Rib Fractures

- Most often occur on lateral aspect of 3rd to 8th ribs, where ribs are least protected by musculature
 - More likely to occur in adults than in children
 - Younger patients have more resilient cartilage that is not fully calcified
 - When blunt forces are applied to ribs of children, energy is transmitted to lung, where pulmonary contusion is more frequent injury than rib fracture
 - Morbidity or mortality from rib fractures depends on patient’s age and number and location of fractures
Why would you expect greater underlying pulmonary injury in a child versus an adult with rib fractures?

Rib Fractures

- Simple rib fractures usually are very painful
 - Rarely are life-threatening
 - Most patients can localize fracture by pointing to area
 - Sometimes movement or grating of bone ends (crepitus) can be felt
- Complications
 - Respiratory or diaphragmatic splinting
 - Occurs when patient uses breath holding or minimizes chest wall movement to lessen pain
 - Can lead to atelectasis (collapse of lung tissue)
 - Ventilation-perfusion mismatch (perfused alveoli that are not ventilated)
Rib Fractures

• Goals of treatment
 – Relieve pain
 • May be relieved by splinting arm against chest wall with sling and swathe
 • Circumferential splinting should not be used as it may not allow complete expansion of chest wall during respiration
 • Administration of analgesics per protocol

Rib Fractures

• Goals of treatment
 – Maintain pulmonary function to prevent atelectasis
 • Encourage patient to cough and to breathe deeply
 – Based on mechanism of injury, consider possibility of more serious trauma
 • Closed pneumothorax
 • Internal bleeding
 – Fractures to lower ribs (8-2) may be associated with injuries to spleen, kidneys, or liver

Rib Fractures

• Great force is required to fracture 1st and 2nd ribs
 – Because of their shape and protection provided by scapulae, clavicles, and upper chest musculature
 – May be associated with
 • Myocardial contusion
 • Bronchial tears
 • Vascular injury
Flail Chest

- May occur when three or more adjacent ribs are fractured in two or more places
 - May be difficult to detect in prehospital setting because of muscle spasm that often accompanies injury
 - Within 2 hours after injury, muscle spasm subsides
 - At that point, injured segment of chest wall may begin to move in contrary fashion (paradoxical motion) with inspiration and expiration
 - Interrupts normal mechanics of breathing and decreases effective ventilation

Rib fracture
Flail Chest

• Causes
 – Vehicle crashes
 – Falls
 – Industrial accidents
 – Assault
 – Birth trauma

• Mortality rate is 8 to 35 percent because of underlying, associated injuries
 – Increases with
 • Advanced age
 • Seven or more rib fractures
 • Three or more associated injuries
 • Shock
 • Head injury
Flail Chest

• Diaphragm descends during inspiration
• Lowers intrapleural pressure
 – Unstable chest wall is pushed (“sucked”) inward by negative intrathoracic pressure as rest of chest wall expands
 – During expiration, diaphragm rises, and intrapleural pressure exceeds atmospheric pressure
 • Causes unstable chest wall to move outward

Flail Chest

• Often develop hypoxia
 – Because of lung contusions usually related to this injury
 – Bleeding from alveoli and lung tissue causes contusion
 – Associated with decreased vital capacity and vascular shunting of deoxygenated blood

Flail Chest

• Signs and symptoms
 – Bruising
 – Tenderness
 – Bony crepitus on palpation
 – Paradoxical motion (late sign)
Flail Chest

- Prehospital management
 - Assisting ventilation with high-concentration supplemental O₂
 - Fluid replacement as needed
 - Field stabilization of flail segment is not recommended
 - Many authorities recommend intubation and positive-pressure ventilation (internal splinting) in patients with severe respiratory distress and flail chest

Flail Chest

- Prehospital management
 - Intubation may be indicated if chest injury is associated with
 - Shock
 - Other severe injuries
 - Head injury
 - Pulmonary disease
 - Patient over 65 years of age

Flail Chest

- Most conservative methods for obtaining adequate oxygenation and ventilation should be used to manage patients with flail chest
 - Large percentage of patients with significant chest injury will progress to respiratory failure
 - Requires long-term ventilatory support and hospitalization
Why is positive-pressure ventilation the management of choice for this injury?

Sternal Fractures

- Uncommon but serious injury
 - Usually result from direct blow to chest
 - Usually very painful
 - May be associated with
 - Unstable chest wall
 - Myocardial injury
 - Cardiac tamponade

Sternal Fractures

- Occur in only 5 to 8 percent of patients with blunt chest trauma
 - Mortality rate is 25 to 45 percent
 - Signs and symptoms
 - History of significant anterior chest trauma
 - Tenderness
 - Abnormal motion or crepitation over sternum
Sternal Fractures

• Prehospital management
 – Maintaining high degree of suspicion for associated injuries
 – Airway maintenance
 – Ventilatory support
 – Pulse oximetry
 – ECG monitoring
 – Rapid transport

Sternal Fractures

• Associated injuries that often contribute to serious disability or death
 – Pulmonary and myocardial contusion
 – Flail chest
 – Vascular disruption of thoracic vessels (rare)
 – Intra-abdominal injuries
 – Head injury
Pulmonary Injury

- Classified as
 - Closed pneumothorax
 - Tension pneumothorax
 - Open pneumothorax
 - Hemothorax
 - Pulmonary contusion
 - Traumatic asphyxia

Any of these injuries can result in difficulty in breathing and respiratory insufficiency

Prehospital treatment
- Ensure open airway
- Ventilatory support
- Correct immediately life-threatening ventilatory problems (e.g., tension pneumothorax)
- Rapid transport for definitive care

Closed Pneumothorax

- Simple pneumothorax caused by presence of air in pleural space
 - Causes lung to partially or totally collapse
 - Common causes
 - Fractured rib that penetrates underlying lung
 - May occur without rib fractures
 - Excessive pressure on chest wall against closed glottis (paper bag effect)
 - Rupture or tearing of lung tissue and visceral pleura from no apparent cause (e.g., spontaneous pneumothorax)
 - Occurs in 15 to 50 percent of patients with severe blunt chest trauma
 - 100 percent of patients with penetrating chest trauma
How do you think that high-flow oxygen promotes faster resolution of a closed pneumothorax?

Closed Pneumothorax

- Signs and symptoms
 - Dependent on severity of hypoxia, ventilation impairment, percentage of lung that has collapsed
 - Chest pain
 - Dyspnea
 - Tachypnea
 - Diminished/absent breath sounds on affected side
Closed Pneumothorax

- Treatment
 - Ventilatory support with high-concentration O₂
 - Carefully monitor for signs of tension pneumothorax
 - Transport in semisitting position of comfort unless contraindicated by mechanism of injury
 - If patient’s respiratory rate is less than 12 or greater than 28 beats/minute, ventilatory assistance with a bag-valve-mask may be indicated

Closed Pneumothorax

- Most healthy patients have large circulatory and ventilatory reserve capacities
 - Closed pneumothoraces usually do not pose threat to life
 - Life-threatening consequences may develop if
 - Pneumothorax is tension pneumothorax
 - It occupies more than 40 percent of hemithorax
 - Occurs in patient with shock or preexisting pulmonary or cardiovascular

Open Pneumothorax

- Communicating pneumothorax develops when chest injury exposes pleural space to atmospheric pressure
 - Severity of injury is directly proportional to size of wound
 - When chest wound is larger than normal pathway for air through nose and mouth, atmospheric pressure forces air through open wound and into thoracic cavity during inspiration
 - As air accumulates in pleural space, lung on injured side collapses
 - Lung begins to shift toward uninjured side
Open Pneumothorax

- Very little air enters tracheobronchial tree to be exchanged with intrapulmonary air on affected side
 - Results in decreased alveolar ventilation and decreased perfusion
 - Normal side also is adversely affected
 - Expired air may enter lung on collapsed side
 - It then is re-breathed into functioning lung with next ventilation
 - May result in severe ventilatory dysfunction, hypoxemia, and death unless condition is quickly recognized and corrected
Open Pneumothorax

• Signs and symptoms
 – Shortness of breath
 – Pain
 – Sucking or gurgling sound as air moves in and out of pleural space through open chest wound

Open Pneumothorax

• Prehospital treatment
 – Close chest wound by first applying direct pressure with gloved hand
 • Chest wound can then be sealed by applying occlusive dressing of petroleum gauze or dressing of foil or plastic, securing it with tape
 • Medical direction may advise that only three sides of dressing be taped
 • Provides venting mechanism (or one-way valve)
 • May allow spontaneous decompression of developing tension pneumothorax
 • Closely monitor for development of tension pneumothorax if patient’s dressing does not provide venting mechanism
Open Pneumothorax

- Prehospital treatment
 - Provide ventilatory support with high-concentration O_2 and monitor O_2 saturation
 - Airway management includes assisting ventilations with bag-mask device and intubation
 - Treat patient for shock by administering crystalloid per protocol
 - Rapidly transport

Tension Pneumothorax

- When air in thoracic cavity cannot exit pleural space, a tension pneumothorax may develop
 - True emergency
 - Results in profound hypoventilation and impaired perfusion
 - May result in death if not immediately recognized and managed
Tension Pneumothorax

- When air is allowed to leak into pleural space during inspiration and becomes trapped during expiration, pleural pressure increases
 - Produces shift in mediastinum
 - Further compresses lung on uninjured side
 - Compression of vena cava reduces venous return to heart
 - Results in decrease in cardiac output
Tension Pneumothorax

- Signs and symptoms
 - Anxiety
 - Cyanosis
 - Increasing dyspnea
 - Tracheal deviation (late sign)
 - Tachycardia
 - Hypotension or unexplained signs of shock
 - Diminished or absent breath sounds on injured side
 - Distended neck veins (unless patient is hypovolemic)
 - Unequal expansion of chest (tension does not fall with respiration)
 - Subcutaneous emphysema

Why may the neck veins be distended in a patient with tension pneumothorax?

Tension Pneumothorax

- Should be managed aggressively
 - Evidenced by
 - Increasing dyspnea
 - Compromised ventilation
 - Tachycardia
 - Tachypnea
 - Unilateral decreased or absent breath sounds
 - Hyper-resonance on percussion
 - Emergency care
 - Directed at reducing pressure in pleural space
 - Returning intrapleural pressure to atmospheric or subatmospheric levels
Tension Pneumothorax Associated with Penetrating Trauma

• Sealing open pneumothorax with occlusive dressing may produce tension pneumothorax
 – In such cases, increased pleural pressure can be relieved by momentarily removing dressing
 – When dressing is lifted from wound, audible release of air from thoracic cavity should be noted
 – If this does not occur and patient’s condition remains unchanged, wound should be gently spread open with gloved fingers
 • May allow trapped air to escape

• Sealing open pneumothorax with occlusive dressing may produce tension pneumothorax
 – After pressure has been released, wound should again be sealed
 • Dressing may need to be removed more than once to relieve pleural pressure during transport
 • If tension is not relieved with this procedure, needle decompression of thorax (needle thoracentesis; needle thoracostomy) should be performed

• Needle decompression should be performed when three findings are present
 – Worsening respiratory distress or increasing difficulty ventilating with BVM device
 – Unilateral decreased or absent breath sounds
 – Decompensated shock (systolic BP less than 90 mm Hg)
Tension Pneumothorax Associated with Closed Trauma

- Tension pneumothorax that develops in patient with closed chest trauma
 - Must be relieved through thoracic decompression
 - Can be done with large-bore needle or commercially available thoracic decompression kit

Tension Pneumothorax Associated with Closed Trauma

- For needle decompression, large-bore, 10- or 14-gauge hollow catheter-over-needle is inserted into affected pleural space
 - Needle can be inserted anteriorly in 2nd intercostal space in midclavicular line
 - May be placed in 4th or 5th intercostal space laterally on involved side
 - Needle should be inserted just above rib
 - After insertion of needle, audible rush of air should be noted

Tension Pneumothorax Associated with Closed Trauma

- Audible rush of air
 - Pressure escaping from pleural space (confirming tension pneumothorax)
 - At this point, patient should show signs of improvement
 - Patient will be easier to ventilate
 - Person's breathing will be less labored
 - Needle should be withdrawn and catheter secured in place with tape
 - Needle decompression may need to be repeated if catheter becomes occluded blood clot and tension pneumothorax reoccurs
Put your finger on the correct location on your chest to place a needle for decompression of a tension pneumothorax.
Hemothorax

- Accumulation of blood in pleural space
 - Caused by bleeding from lung parenchyma or damaged vessels
 - If associated with pneumothorax, called hemopneumothorax

Hemothorax

- Accumulation of blood in pleural space
 - Blood loss may be massive in these patients
 - Each side of thorax can hold 30 to 40 percent (2000 to 3000 mL) of patient’s blood volume
 - Severed intercostal artery can easily bleed 50 mL per minute
 - Patients with hemothorax often have hypovolemia and hypoxemia
 - Commonly associated with pneumothorax (25 percent) and extrathoracic injuries (73 percent)
Hemothorax

- As blood continues to fill pleural space, lung on affected side may collapse
 - In rare cases, mediastinum may even shift away from hemothorax
 - Would compress unaffected lung

Hemothorax

- As blood continues to fill pleural space, lung on affected side may collapse
 - Resultant effects of respiratory and circulatory compromise are responsible for the following signs and symptoms
 - Tachypnea
 - Dyspnea
 - Cyanosis (often not evident in hemorrhagic shock)
 - Diminished or decreased breath sounds (dullness on percussion)
 - Hypovolemic shock
 - Narrow pulse pressure
 - Tracheal deviation to the unaffected side (rare)

Hemothorax

- Prehospital care
 - Directed at correcting ventilatory and circulatory problems
 - High-concentration O₂
 - Ventilatory support with bag-mask device, intubation, or both
 - Administration of volume-expanding fluids to correct hypovolemia
 - Rapid transport
 - Hemothorax associated with great vessel or cardiac injury has a high mortality rate
 - 50 percent die within 1 hour of injury
Why is hemothorax associated with a higher mortality rate than simple, closed pneumothorax?

Pulmonary Contusion

• Most often caused by rapid deceleration forces
 – Push lung against chest wall
 • Results in rupture of alveoli, with hemorrhage and swelling of lung tissue
 – More than 50 percent of patients with blunt chest trauma have pulmonary contusion

• During sudden inertial deceleration and direct impact, fixed and mobile parts of lung move at varying speeds
 – Result is stretching and shearing of alveoli and intravascular structures (inertial effect)
 • This kinetic wave of energy is partly reflected at alveolar membrane surface
 • Remainder causes localized release of energy (spalding effect)
 • Overexpansion of air in lungs occurs after primary energy wave has passed (implosion effect)
Pulmonary Contusion

• Low-pressure rebound shock waves cause overstretching and damage to lung tissue
 – Combination of these events results in alveolar and capillary damage with bleeding into lung tissue and alveoli
 – Contused area of lung is unable to function properly after injury
 • Profound hypoxemia may develop
 • Degree of respiratory complication is directly related to size of contused area

Pulmonary Contusion

• Signs and symptoms are subtle at first
 – Should be suspected based on kinematics of event and presence of associated injuries
 – Tachypnea
 – Tachycardia
 – Cough
 – Hemothysis
 – Apprehension
 – Respiratory distress
 – Dyspnea
 – Evidence of blunt chest trauma
 – Cyanosis

Will you always be able to distinguish between simple pneumothorax and pulmonary contusion in the prehospital setting? Why?
Pulmonary Contusion

• Emergency care
 – Ventilatory support and administration of high-concentration O₂
 – Patients with associated injuries or preexisting pulmonary or cardiovascular disease
 • Should be closely monitored in case ventilations need to be assisted with a bag-valve device, intubation, or both
 – May be associated with major chest injury
 – Generally heal spontaneously over several weeks

Traumatic Asphyxia

• Severe crushing injury to chest and abdomen
 – Results from increase in intrathoracic pressure
 • Pressure increase forces blood from right side of heart into veins of upper thorax, neck, and face
 • Forces involved may cause lethal injury, but traumatic asphyxia alone is not life-threatening
 • Brain hemorrhages, seizures, coma, and death have been documented to occasionally occur
Traumatic Asphyxia

- Signs and symptoms
 - Reddish purple discoloration of face and neck
 - Skin below area remains pink
 - Jugular vein distention
 - Swelling or hemorrhage of conjunctiva
 (subconjunctival petechiae may appear)

Traumatic Asphyxia

- Emergency care
 - Ensure open airway
 - Provide adequate ventilation
 - Care for associated injuries
 - Be ready to manage hypovolemia and shock when compressive force is released

Heart and Great Vessel Injury

- Trauma to heart and great vessels may result from blunt or penetrating trauma and associated
- Potentially fatal complications of these injuries
 - Life-threatening dysrhythmias
 - Conduction abnormalities
 - Congestive heart failure
 - Cardiogenic shock
 - Cardiac tamponade
 - Cardiac rupture
 - Coronary artery occlusion
Myocardial Contusion

• Usually caused by vehicle collision
 – Chest wall strikes dashboard or steering column
 – Deformed dashboard or steering column should alert paramedic to possibility of cardiac injury
 – Blunt myocardial injury occurs in as many as 55 percent of patients who suffer blunt trauma to chest

How would you manage a cardiac rhythm disturbance resulting from a myocardial contusion?

Myocardial Contusion

• Extent of injury may vary
 – May be only localized bruise
 – May be full-thickness injury to wall of heart with hemorrhage and edema
 – Blood may accumulate in pericardium (hemopericardium) as result of tear in epicardium or endocardium
 • May result in cardiac rupture or traumatic MI
 • Fibrinous reaction at contusion site may lead to delayed rupture or ventricular aneurysm

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
Myocardial Contusion

• Patients may have no symptoms, or they may complain of chest pain similar to that seen with MI
 – Other signs and symptoms
 • ECG abnormalities
 • New cardiac murmur
 • Pericardial friction rub (late)
 • Persistent tachycardia (sinus tachycardia occurs in 70 percent of patients)
 • Palpitations

Myocardial Contusion

• Emergency care
 – Similar to that for MI
 – O₂ administration
 – ECG monitoring
 – Pharmacological therapy for dysrhythmias and hypotension
 – Any intervention that increases myocardial O₂ demand should be avoided

Pericardial Tamponade

• Penetrating trauma may cause tears in heart chamber walls
 – Allows blood to leak from heart
 – If pericardium has been torn sufficiently, blood can leak into thoracic cavity and patient rapidly dies from hemorrhage
 – Often, pericardium remains intact
 • In such cases, blood enters pericardial space
 • Causes increase in pericardial pressure and volume (pericardial tamponade)
Pericardial Tamponade

- Increased pressure prevents heart from expanding and refilling with blood
 - 60 to 100 mL of blood and clots in pericardial sac can cause tamponade
 - Results in decrease in stroke volume and cardiac output
 - Myocardial perfusion decreases because of pressure effects on walls of heart and decreased diastolic pressures

Pericardial Tamponade

- Associated ischemic dysfunction may result in MI
- Pericardial tamponade occurs in fewer than 2 percent of patients who suffer blunt chest trauma
- 60 to 80 percent of patients with stab wounds involving heart develop tamponade

Pericardial Tamponade

- At first, most patients with pericardial tamponade have peripheral vasoconstriction
 - Diastolic BP rises > systolic BP
 - Causes decrease in pulse pressure
 - These patients are also tachycardic
 - Increase in heart rate compensates for decrease in cardiac output
Pericardial Tamponade

- At first, most patients with pericardial tamponade have peripheral vasoconstriction
 - Up to this point, pericardial tamponade and hemorrhagic shock have similar signs
 - Key clinical finding often allows differentiation of two forms of shock
 - First described by Beck in 1935
 - It and two other clinical clues make up Beck triad

Pericardial Tamponade

- Beck triad
 - Consists of
 - Elevated central venous pressure (evidenced by jugular vein distention)
 - Muffled heart sounds
 - Hypotension
 - 1st element: elevated central venous pressure, is single best way to distinguish pericardial tamponade from hemorrhagic shock

Pericardial Tamponade

- Beck triad
 - Other signs and symptoms
 - Tachycardia
 - Respiratory distress
 - Narrow pulse pressure
 - Cyanosis of head, neck, upper extremities
Pericardial Tamponade

- Two other findings in pericardial tamponade
 - Pulsus paradoxus
 - Systolic BP that drops more than 10-15 mm Hg during inspiration compared with expiration
 - Excessive decline in systolic pressure occurs in cardiac tamponade when pleural pressure is reduced during inspiration
 - Reduction of pleural pressure provides some relief from tamponade and causes inspiratory fall in arterial flow and systolic pressure

- Pulsus paradoxus
 - Systolic BP that drops more than 10-15 mm Hg during inspiration compared with expiration

- Excessive decline in systolic pressure occurs in cardiac tamponade when pleural pressure is reduced during inspiration

- Reduction of pleural pressure provides some relief from tamponade and causes inspiratory fall in arterial flow and systolic pressure

Pericardial Tamponade

- Two other findings in pericardial tamponade
 - Electrical alternans
 - Refers to change in amplitude of patient’s ECG waveforms that decrease with every other cardiac cycle
 - Rare finding in cardiac tamponade

- Electrical alternans
 - Refers to change in amplitude of patient’s ECG waveforms that decrease with every other cardiac cycle

- Rare finding in cardiac tamponade
Pericardial Tamponade

- True emergency
 - Pericardial blood must be removed
 - Bleeding must be stopped if patient is to survive injury
- Prehospital management
 - Careful monitoring
 - O₂ administration
 - Aggressive fluid replacement to maintain adequate preload (if transport time is short)
 - Rapid transport

Pericardial Tamponade

- Definitive care
 - Needle pericardiocentesis to remove blood from pericardial sac
 - Removal of as little as 20 mL may drastically improve cardiac output

Myocardial Rupture

- Occurs when blood-filled chambers of ventricles are compressed with enough force to rupture chamber wall, septum, or valve
 - Nearly always immediately fatal
 - About 20 percent of patients will survive 30 minutes or longer, allowing time for surgical repair
 - May allow time for rapid transport and surgical repair
 - Motor vehicle crashes are responsible for most cases of myocardial rupture, accounting for 15 percent of fatal thoracic injuries
Myocardial Rupture

- Other proposed mechanisms
 - Deceleration or shearing forces that disrupt the inferior and superior vena cavae
 - Upward displacement of blood (causing increase in intracardiac pressure) after abdominal trauma
 - Direct compression of heart between sternum and vertebrae
 - Laceration from rib or sternal fracture
 - Complications of myocardial contusion

Myocardial Rupture

- Patients often present with significant mechanism of injury
 - Signs and symptoms of congestive heart failure and cardiac tamponade may be present
 - Monitor closely for signs of pericardial tamponade

Myocardial Rupture

- Prehospital care
 - Mainly supportive
 - Airway and ventilatory support
 - Rapid transport
 - Consider possibility of tension pneumothorax
 - Mimic those of myocardial rupture with tamponade
Traumatic Aortic Rupture

- Thought to be result of shearing forces
 - Develop between tissues that decelerate at different rates
 - Common mechanisms of injury
 - Rapid deceleration in high-speed motor vehicle crashes
 - Falls from great heights
 - Crushing injuries
 - Estimated that 1 in 6 people who die in motor vehicle crashes has rupture of aorta
 - Of these patients, 80 to 90 percent die at scene as result of massive hemorrhage

- About 10 to 20 percent survive first hour
 - Bleeding is tamponaded by surrounding adventitia of aorta and intact visceral pleura
 - Of these individuals, 30 percent have ruptures within 6 hours
 - For these reasons, rapid and pertinent evaluation and transport to appropriate medical facility are critical
 - Aortic rupture is responsible for 15 percent of all deaths from blunt trauma

- Usual site of damage to aorta is in distal arch
 - Just beyond takeoff of left subclavian artery and proximal to ligamentum arteriosum
 - Ligamentum arteriosum and descending thoracic arch are somewhat fixed
 - Transverse portion of arch is somewhat mobile
 - If shearing forces exceed tensile strength of arch, junction of mobile and fixed points of attachment may be partly torn
 - If outer layer of tissue around aorta remains intact, patient may survive long enough for surgical repair
Traumatic Aortic Rupture

- Aortic rupture is severe injury
 - About 85 percent of patients die before reaching hospital
 - Any trauma patient who has unexplained shock and appropriate mechanism of injury (rapid deceleration) should be suspected of having ruptured aorta
 - BP may be normal or elevated, with significant difference between two arms
 - Upper extremity hypertension with absent or weak femoral pulses can occur in these patients
 * Thought to result from compression of aorta by expanding hematoma

- Other patients have hypertension because of increased activity of sympathetic nervous system
 - About 25 percent have harsh systolic murmur that can be heard over pericardium or between scapulae
 - In rare cases, may have paraplegia without cervical or thoracic spine injury
 * Occurs as consequence of decreased blood flow through anterior spinal artery
 - Anterior spinal artery is in thoracic region
 * Composed of branches from posterior intercostal arteries
 * Are branches of thoracic aorta
Traumatic Aortic Rupture

• Prehospital management
 – Advising medical direction of suspected rupture
 – Administration of high-concentration O₂
 – Ventilatory support with spinal precautions
 – Judicious fluid replacement (avoiding overhydration)
 – Rapid transport for surgical repair

Penetrating Wounds of the Great Vessels

• Usually involve injury to chest, abdomen, or neck
 – Often accompanied by
 • Massive hemothorax
 • Hypovolemic shock
 • Cardiac tamponade
 • Enlarging hematomas that may cause compression of vena cava, trachea, esophagus, great vessels, and heart

Penetrating Wounds of the Great Vessels

• Prehospital care
 – Provide airway and ventilatory support
 – Managing hypovolemia with judicious fluid therapy (guided by medical direction)
 – Rapid transport for definitive care
Other Thoracic Injuries

- Other injuries that may be associated with blunt or penetrating trauma to thorax
 - Esophageal and tracheobronchial injuries
 - Diaphragmatic rupture

Esophageal and Tracheobronchial Injuries

- Esophageal injuries most often are caused by penetrating trauma
 - Can result from
 - Spontaneous perforation caused by cancer
 - Anatomic distortions caused by diverticula or gastric reflux, both of which can lead to violent vomiting

Esophageal and Tracheobronchial Injuries

- Assessment findings
 - Pain
 - Fever
 - Hoarseness
 - Dysphagia
 - Respiratory distress
 - Shock
Esophageal and Tracheobronchial Injuries

• If esophageal perforation occurs in cervical region
 – Local tenderness
 – Subcutaneous emphysema
 – Resistance to neck movement
• Esophageal perforation that occurs lower in thoracic region may result in
 – Mediastinal and subcutaneous emphysema
 – Inflammation of mediastinum
 – Splinting of chest wall

Esophageal and Tracheobronchial Injuries

• Tracheobronchial injuries (tracheobronchial disruptions) are rare
 – Occur in fewer than 3 percent of victims of blunt or penetrating chest trauma
 – Mortality rate for these injuries is about 10 percent, depending on associated injuries, early diagnosis, and surgical repair
 – Most injuries occur within 3 cm (about 1½ inches) of carina
 • Can occur anywhere along tracheobronchial tree

Esophageal and Tracheobronchial Injuries

• Tracheobronchial injuries (tracheobronchial disruptions) are rare
 – Signs and symptoms
 • Severe hypoxia
 • Tachypnea
 • Tachycardia
 • Massive subcutaneous emphysema
 • Dyspnea
 • Respiratory distress
 • Hemoptysis
Esophageal and Tracheobronchial Injuries

- Emergency care
 - Provide airway, ventilatory, and circulatory support
 - Rapid transport for definitive care

Diaphragmatic Rupture

- Diaphragm is sheet of dome-shaped muscle
 - Separates abdominal cavity from thoracic cavity
 - Sudden compression of abdomen (such as with blunt trauma to trunk) results in sharp increase in intra-abdominal pressure
 - When this occurs, pressure differences may cause abdominal contents to rupture through thin diaphragmatic wall and enter chest cavity

Diaphragmatic Rupture

- Detected more often on left side than on right side
 - Rupture on either side may allow intra-abdominal organs to enter thoracic cavity
 - They may compress lung, resulting in
 - Reduced ventilation
 - Decreased venous return
 - Decreased cardiac output
 - Shock
 - Because of mechanical forces involved, patients with diaphragmatic rupture often have multiple injuries
Diaphragmatic Rupture

• Signs and symptoms
 – Abdominal pain
 – Shortness of breath
 – Decreased breath sounds
 – If most of abdominal contents are forced into chest, abdomen may have hollow or empty appearance
 • Bowel sounds may be heard in chest

Diaphragmatic Rupture

• Prehospital management
 – O₂ administration
 – Ventilatory support as needed (positive pressure ventilation may worsen injury)
 – Volume-expanding fluids
 – Rapid transport with patient in supine position to appropriate medical facility for surgical repair
 – Some medical direction agencies also may recommend that nasogastric tube be placed to empty stomach and reduce abdominal pressure
Summary

- **Chest injuries** are caused by blunt or penetrating trauma
 - Often results from motor vehicle crashes, falls from heights, blast injuries, blows to the chest, chest compression, gunshot wounds, and stab wounds
- **Fractures of clavicle, ribs, or sternum**, as well as flail chest, may be caused by blunt or penetrating trauma
 - Complications of skeletal trauma of chest may include cardiac, vascular, or pulmonary injuries

Summary

- **Closed pneumothorax** may be life-threatening if (1) it is a tension pneumothorax, (2) it occupies more than 40 percent of the hemithorax, or (3) it occurs in a patient in shock or with a preexisting pulmonary or cardiovascular disease
- **Open pneumothorax** may result in severe ventilatory dysfunction, hypoxemia, and death unless it is quickly recognized and corrected

Summary

- **Tension pneumothorax** is a true emergency
 - Results in profound hypoventilation
 - May result in death if it is not quickly recognized and managed
- **Hemothorax** may result in massive blood loss
 - These patients often have hypovolemia and hypoxemia
Summary

• Pulmonary contusion results when trauma to lung causes alveolar and capillary damage
 – Severe hypoxemia may develop
 • Degree is directly related to size of contused area
• Traumatic asphyxia results from forces that cause increase in intrathoracic pressure
 – When it occurs alone, it is often not lethal
 • Brain hemorrhages, seizures, coma, and death have been reported after these injuries

Summary

• Extent of injury from myocardial contusion may vary
 – Injury may be only localized bruise
 • Also may be full-thickness injury to wall of heart
 – Full-thickness injury may result in cardiac rupture, ventricular aneurysm, or traumatic myocardial infarction

Summary

• Pericardial tamponade occurs if 150 to 200 mL of blood enters the pericardial space suddenly
 – Results in decrease in stroke volume and cardiac output
 – Myocardial rupture refers to acute traumatic perforation of ventricles or atria
 – Nearly always immediately fatal
 • Death may be delayed for several weeks after blunt trauma
Summary

• Aortic rupture is severe injury
 – There is an 80 to 90 percent mortality rate in first hour
 – Paramedic should consider possibility of aortic rupture in any trauma patient who has unexplained shock after rapid deceleration injury

Summary

• Esophageal injuries most frequently are caused by penetrating trauma (e.g., missile projectile and knife wounds)
 – Tracheobronchial injuries are rare
 • Occur in fewer than 3 percent of victims of blunt or penetrating chest trauma, but mortality rate is over 30 percent
 – Tension pneumothorax that does not improve following needle decompression or absence of continuous flow of air from needle following decompression should alert paramedic to possibility of tracheobronchial injury

Summary

• Diaphragmatic ruptures may allow abdominal organs to enter thoracic cavity
 – There they may cause compression of the lung, resulting in reduction in ventilation, decrease in venous return, decrease in cardiac output, and shock
Questions?