Chapter 5
EMS Communications

Lesson 5.1
Phases and Roles of Communications
Learning Objectives

- Outline the phases of communications that occur during typical emergency medical services (EMS) event.
- Describe the role of communications in EMS.
- Outline the basic model of communication.
- Define common EMS communications terms.

Learning Objectives

- Describe how to communicate effectively using primary modes of EMS communication.
- Outline the elements of an EMS communications system.
- Describe the characteristics of EMS communications operation modes.

Phases of Communication

- Five phases of communication during an EMS event
 - Occurrence of event
 - Detection of need
 - Notification and emergency response
 - Arrival, treatment, preparation for transport
 - Preparation for next response
Public Safety Answering Point (PSAP)

- Communication specialists receive call
- Call taker sends details to telecommunicator
- Telecommunicator sends response unit to scene

Public Safety Answering Point (PSAP)

- Emergency medical dispatchers or qualified personnel give these instructions
- EMS unit dispatched to scene
- Paramedic crew advises communications center of response, arrival status via radio or computer data terminal

Public Safety Answering Point (PSAP)

- Paramedics render care at scene, package patient for transport
- Patient delivered to facility
- Paramedics complete report, make EMS vehicle ready for next emergency call
Role of Communications in EMS

- Verbal, written, electronic communications
 - Allow information delivery between person in need, telecommunicator, and paramedic
Basic Model of Communications

• Verbal, nonverbal, written
• Serves as vital information function for decision making
• Process by which individuals or groups transmit meaning to others
• Basic model describes relationship between idea, encoding, sender, medium or channel, receiver, decoding, and feedback
• Idea is the meaning intended

Basic Model of Communications

• Conveying idea requires
 – Encoding
 • Sender to organize intended meaning through medium or channel
 – Decoding
 • Receiver provides feedback that the initial idea was received
Common Barriers to Communication

• Attributes of the receiver
 – Personal reasons may affect interpretations of message
 – Cultural differences
 – Language barriers
 – Sensory deficit

What tends to happen to you when you are talking with someone who continually interrupts you?

Common Barriers to Communication

• Selective perception
 – Persons listen to only part of idea, message
 – Values
 – Mood
 – Motives
 – May block idea when new information conflicts with values, beliefs, expectations
Common Barriers to Communication

- Semantic problems
 - Words often have different meanings for different people
 - Vague, abstract words, jargon, or phrases invite varying interpretation
- Time pressures
 - Can lead to distortions in communications
 - Temptation to bypass normal channels
 - Immediate demands of situation are met, can cause confusion later

Proper Verbal Communications

- Role of proper verbal communications
 - Exchange system, patient information with response team
 - Use local protocol, patient privacy standards, regulations
 - Terms conveyed in clear, short narrative form

Proper Verbal Communications

- Many radio, phone communications recorded
 - May be replayed
 - Patient care
 - Audits
 - Media broadcasts
 - Disciplinary hearings
 - Legal proceedings
Proper Written Communications

- Written documentation
 - Provides legal record of event
 - Conveys clinical information from EMS to emergency department
 - Expected as part of professional work
 - Permanent part of patient record
 - Medical audit

Proper Written Communications

- Written documentation
 - Quality improvement/management
 - Billing
 - Data collection
 - Research

Proper Written Communications

- Other types of documentation
 - Training, work assignments
 - Call records
 - Vehicle maintenance records
 - Vehicle/equipment cleaning records
 - Drug/equipment inventory records
 - Incident reports
 - Significant exposures to diseases or biological hazards
Technological Advances

• Reduce reliance on traditional communication
• Portable wireless voice, data devices
• Satellite terminals
• GPS

Technological Advances

• Diagnostic devices
• Laptops, handheld computers
• PDAs
• Devices allow for real-time capture, advanced notification, reduction in time to in-hospital diagnosis and therapy
Communications Systems

- Terms specific to industry
- Requirements established by FCC

Simple Systems

- Minimum requirements for radio equipment used by ambulance services
 - Self-contained desktop transceiver with speaker
 - Microphone
 - Antenna
 - Mobile unit
 - Two-way radio with multiple-frequency capability

Simple Systems

- Handheld portable radios capable of contact with base station and data recording
- Portable radio
 - Protects crew
 - Aids in optimal care
 - Allows continued contact with communications center
 - Medical direction
Simple Systems

- Data recording part of device is on dispatch or hospital radio or telephone
 - Offers medical, legal protection for service
 - Can verify transmissions when contact is disrupted

Complex Systems

- More advanced radio communications systems
 - Remote consoles
 - High-power transmitters
 - Repeaters
 - Satellite receivers
 - High-power multifrequency vehicle radios

Complex Systems

- Some services also use
 - Mobile transmitter steering
 - Vehicular repeaters
 - Mobile encode-decode capabilities
 - Mobile data terminals
 - Microwave links
 - Other sophisticated devices
Complex Systems

• Base stations
 – Located on hills, mountains, tall buildings
 – Ensure optimal transmission, reception with antennas
 – Generally connected via telephone lines to dispatch centers
 – One dispatch center may be responsible for all fire, police, EMS communications activities

Complex Systems

• Mobile transceivers
 – Vehicle-mounted transmitters
 – Operate at lower outputs than base stations
 – Provide range of 10 to 15 miles average terrain
 – Transmission over flat land, water increases range
 – Transmission over mountains, dense foliage, urban areas decrease range
 – Transmitters with higher output available, offer greater ranges
 – Multichannel units preferred over single-channel radios due to many channels used in EMS system

Complex Systems

• Portable transceivers
 – Handheld devices
 – Used when working away from emergency vehicle
 – Limited range
 – Signal boosted through mobile repeater
 – Single-channel or multichannel units
Complex Systems

• Repeaters
 – Act as long-range transceiver
 – Receive transmissions from low-power portable or mobile radio on one frequency
 – Simultaneously retransmit at higher power on another frequency
 – Fixed or vehicle mounted or both
 – Needed for large geographic areas

Complex Systems

• Repeaters
 – Increase coverage from portable/mobile to portable/mobile units
 – Allow low-power units to receive other radio messages
 – Allow two or more low-power units to communicate with each other when distances or obstructions hinder communication

Complex Systems

• Remote console
 – Most EMS systems use dispatch services located away from base stations
 – Remote centers control all base station functions
 – Connected via dedicated phone lines, microwave, other radio means
 – Dedicated hospitals equipped with terminal that receives, displays telemetry transmissions
 – Console provides contact with paramedic crews in field
Complex Systems

• Satellite receivers and terminals
 – Used depending on terrain
 – Used to ensure low-power units always within coverage
 – Strategically located, connected to base station or repeater by dedicated phone lines, radio, microwave relay

Complex Systems

• Satellite receivers and terminals
 – "Voting systems" automatically select best audio signal
 – Commonly available satellite terminals incorporate ground and transportable stations
 – Provide voice, data, video communications
 – Portable satellite terminals useful when other systems are not available

Complex Systems

• Encoders and decoders
 – Selective call encoders, devices that look like phone dial
 – When activated, encoder transmits tone pulses over air
 – Receivers with decoders recognize specific codes that in turn open audio circuits of receivers
 – Two-tone sequential paging alerts personnel using two pairs of specific frequency tones to address pagers, alert monitors selectively
 – Selective-address system has code for calling all units within radio range (all call)
Complex Systems

• Cellular telephones
 – Alternative to dedicated EMS communications systems
 – More channels available
 – Offer secure link between EMS workers and area hospitals
 – Allow online physicians to speak directly with patients

Complex Systems

• Cellular telephones: disadvantages
 – High network usage might limit channel access, especially during disasters
 – Lack of priority access
 – Inability to monitor calls by other members of emergency response team
 – Agencies have backup radio communications capabilities

Complex Systems

• Digital
 – Digital phones
 – Telemetry
 – Fax transmissions
 – Digital signals used in wireless phones
 – Paging
 – Alerting systems
 – Telemetry, facsimiles transmitted using electronic signals
 – Signals are displayed or printed
Complex Systems

- Computer
 - Technology has potential to “save” data entry steps
 - Documentation in near real time
 - Can sort information
 - Can create multiple reporting formats
 - Quick online, retrieval system, data access
 - Terminals sometimes used to dispatch units automatically to scene
 - Subject to human error, machine limitations
 - Requires regular upgrades, user education

Operation Modes Used

- Simplex
 - Requires transmitter, receiver at each end of communications path
 - Operate on same frequency
 - One end operates at a time
 - Allows messages sent without interruption
 - Slows communication process
 - Takes away ability to discuss case
Operation Modes Used

• Duplex mode
 – Uses two frequencies
 – Allows both parties to communicate at the same time
 – Advantage is party can interrupt to facilitate discussion

Operation Modes Used

• Multiplex mode
 – Transmits telemetry, voice simultaneously from field unit
 – Party can interrupt as needed
 – Voice transmission may interfere with transmission data
 – Most common mode used today
Operation Modes Used

• Trunked system
 – Systems with five or more repeaters that work as a group
 – Each repeater on a different channel
 – System may belong to a single user or be shared by multiple public service agencies
 – Radio transmissions originate, find available repeater in system
 – Computer switches transmission to chosen repeater
 – One fleet captures open channel
 – Advantageous in major metropolitan areas with heavy radio frequencies

What dispatching system do you have in your area?
Lesson 5.2
Components, Functions, Regulations, and Procedures for Communication

Learning Objectives

• Describe the role of dispatching as it applies to prehospital emergency medical care.
• Outline techniques for relaying EMS communications clearly and effectively.

Learning Objectives

• Describe how EMS communications are regulated.
• Distinguish between EMS frequency ranges.
• Outline procedures for EMS communications.
Functions of EMS Dispatch

• Receive and process calls
 – Dispatcher receives, records call
 – Selects appropriate course of action by gathering information about emergency
 – May also provide emergency care instructions
• Dispatch, coordinate EMS resources
 – Directs proper emergency vehicles to correct address
 – Coordinates movements of emergency vehicles

Functions of EMS Dispatch

• Relay medical information between
 – Appropriate medical facilities
 – EMS personnel
 – Fire
 – Police
 – Rescue workers
 – Private citizens
• Channel may be telephone, radio, or biomedical telemetry

Functions of EMS Dispatch

• Coordinate with public safety agencies
 – Provide for communication between public safety units and elements of EMS system
 – Help coordinate services
 – Well-coordinated systems require dispatchers to know location, status, and availability of EMS vehicles
 – Larger systems may use computer-aided dispatching
Functions of EMS Dispatch

- Advanced technology allows
 - Automatic emergency medical dispatch
 - Automatic entry of 911
 - Automatic call notification/request for assistance
 - Automatic interface to automatic vehicle location with or without map display
 - Automatic interface to mobile data terminal
 - Computer messaging among multiple radio operators, call takers, or both
 - Dispatch note taking, reminder aid, or both

Functions of EMS Dispatch

- Advanced technology allows
 - Emergency medical dispatch review
 - Manual or automatic updates of unit status
 - Manual entry of call information
 - Radio control and display of channel status
 - Standard operating procedure review
 - Telephone control and display of circuit status
Dispatcher Training

• Required specialized medical training for EMS and public safety agencies

• Dispatchers trained to
 – Use locally approved emergency medical dispatch guide cards (customized to local protocols and EMS response priorities)
 – Quickly and properly determine nature of call
 – Determine priority of call
 – Dispatch appropriate response
 – Provide caller with instructions to help treat patient until responding EMS arrives

Dispatcher Training

• Base of training in EMS helps telecommunicator understand
 – Functions of EMS system
 – Personnel capabilities
 – Equipment limitations

• Trained with protocols to give prearrival instructions
 – CPR instructions
 – Aspirin administration for coronary event
 – Protocols might mitigate event before arrival of EMS unit

Dispatcher Training

• Variety of dispatching systems, procedures used across the United States
 – Simple call received, ambulance dispatched type
 – Call prioritization, prearrival instructions systems
Call Prioritization System

• Determines what type of assistance is needed for an emergency call
 – May include referring caller to other services
 – Choosing basic life support
 – Advanced life support response
 – Selecting private or public EMS service
 – Determining use of audible and visual warning devices

Prearrival Instruction System

• Prearrival instructions
 – Provide instant help to caller
 – Complement call prioritization process
 – Allow dispatchers to give updated information to responding units
 – May be lifesaving in critical incidents
 – Provide emotional support for caller, bystander, or victim

What are some potential consequences of a dispatching error?
Regulation

• Radio communications
 – FCC develops rules, regulations for use of all radio equipment, frequencies
 – State, local governments may have rules, regulations for radio operations
 – Be knowledgeable about agencies, follow guidelines

Why are these rules and regulations needed for good EMS communications?

Regulation

• Primary functions of FCC
 – Licensing and allocating frequencies
• Establishing technical standards for radio equipment
 – Establishing, enforcing rules
 – Establishing regulations for equipment operations
 – Monitoring frequencies for appropriate usage
 – Spot checking for appropriate license, records
EMS Frequency Ranges

• VHF low band (32–50 MHz), VHF high band (150–174 MHz)
 – Used for public safety radio
 – Assigned strictly for two-way use or one-way paging
 – Normally operate in simplex mode
• Ultra high frequency (UHF)
 – Used in either half duplex, duplex, or multiplex modes

EMS Frequency Ranges

• VHF low-band signals
 – Generally have greatest range, cover a greater distance than VHF high band or UHF
 – Follow curvature of Earth’s surface
 – Subject to noise interference, physical or structural interference
 – May not provide best coverage
EMS Frequency Ranges

- VHF high-band signals
 - Generally have medium range
 - Travel in straight lines
 - Signals more easily reflect around buildings and other structures
 - May provide better radio coverage in some areas

EMS Frequency Ranges

- Special emergency radio services (SERS)
 - 1974, FCC established
 - To be used by EMS, hospitals, school buses, and rescue operations
 - 75 radio channels in group
 - 10 UHF channels designated for medical communications
 - EMS-only communications confined to the 450–470 MHz UHF frequency band and five VHF frequencies
EMS Frequency Ranges

- UHF band signals
 - Generally have limited range
 - More “straight-line sensitive” than VHF high-band signals
 - Ability to reflect or bounce around buildings exceeds VHF high-band signals
 - May be most effective frequency in metropolitan areas
 - Least susceptible to noise interference of three bands
 - Reaches into/out of structures more easily

Public Safety 800-MHz Frequencies

- Growth of EMS/other public service operations resulted in overcrowded frequencies, radio congestion
- 1987: FCC allocated additional bands (821–824 MHz and 866–869 MHz) to SERS assignments
 - Helped resolve some communication problems
 - Generally have limited range, more straight line than VHF high-band signals
 - With use of repeaters, ability to reflect or bounce around buildings exceeds VHF high-band and UHF 400-MHz band
 - Best suited for use in urban areas
Public Safety 800-MHz Frequencies

- FCC established “trunking” requirements
 - Ensures efficiency of 800-MHz band
 - Required five or more repeaters (each on different channel) to work together as a group
 - May belong to single user, or shared
 - When radio transmission is originated, computerized scanning automatically finds available repeater in system then switches all radios in fleet to selected repeater

Public Safety 800-MHz Frequencies

- FCC established “trunking” requirements
 - As one fleet captures open channel, it locks out all other shared system users
 - Prevents interference from other agencies
 - Several groups helped FCC to reorganize management of frequencies for public service operations
 - Goals to improve ability of public service agencies to communicate with each other

EMS Communications Procedures

- EMS systems use standard radio communications protocol
 - Desired format for message transmission
 - Key words
 - Phrases
- Following format aids professional, efficient radio communications
EMS Communications Procedures

- General guidelines for radio communications
 - Formulate message so communications are effective
 - Speak into microphone at 2- to 3-inch range
 - Speak slowly, clearly
 - Enunciate each word distinctly, avoid words that are difficult to hear
 - Speak in normal pitch without emotion
 - Be brief, concise

EMS Communications Procedures

- General guidelines for radio communications
 - Break long messages into shorter ones
 - Avoid codes unless system approved
 - Avoid dialect or slang
 - Advise receiving party upon completed transmission
 - Confirm receiving party received message
 - Always be professional, polite, and calm

Relaying Patient Information

- Standard format of transmission may be developed as protocol for some EMS services
 - Allows best use of communications systems, limits radio air time
 - Physicians can receive details regarding patient’s condition
 - Chance of omitting critical details is decreased
 - Patient information can be reported to hospital or dispatcher by radio or phone
Relaying Patient Information

- **Radio report components**
 - Brief, concise
 - Unit and personnel identification
 - Description of scene or incident
 - Patient’s age, sex, approximate weight (if drug orders needed)
 - Chief complaint
 - Associated symptoms
 - Brief, pertinent history of present illness or injury

- **Radio reports components**
 - Pertinent medical history, medications, and allergies
 - Pertinent physical examination findings
 - Level of consciousness
 - Vital signs
 - Neurological examination
 - General appearance and degree of distress
 - ECG results (if applicable)

- **Radio reports components**
 - Diagnostic findings (e.g., serum glucose)
 - Trauma index or Glasgow coma scale (if applicable)
 - Other pertinent observations and significant findings
 - Any treatment given
 - Estimated time of arrival
 - Request for orders from or further questions for medical direction physician

Can you think of three reasons why a concise EMS radio report is essential?

The SOAP Format
- Used as memory aid to organize written and verbal patient reports
- Subjective data
 - All patient symptoms
 - Chief complaint
 - Associated symptoms
 - History
 - Current medications
 - Allergies
 - Information provided by bystanders and family

The SOAP Format
- Objective data
 - Pertinent physical examination
 - Vital signs
 - Level of consciousness
 - Physical examination findings
 - ECG
 - Pulse oximetry readings
 - Blood glucose determinations
The SOAP Format

- Assessment data
 - Paramedic’s clinical impression of patient based on subjective, objective data
- Plan of patient management
 - Treatment provided
 - Any requests for additional treatment

Information Exchange Procedures

- Paramedics should repeat all orders received from physician
- Unclear orders should be confirmed
- Repeat all drug orders for confirmation
- Receiving hospital should be informed of significant changes in patient’s status before/during transport

Information Exchange Procedures

- Protect patient’s privacy
- Use proper unit numbers, hospital numbers, names, and titles
- Avoid slang or profanity
- Use echo procedure when receiving directions
- Obtain confirmation that message was received
Information Exchange Procedures

- Give final verbal report to person assuming responsibility of patient at receiving facility
 - Short update if person receiving patient has been following care given
 - If person is not familiar with patient, report should be complete
 - All pertinent information should be conveyed during handoff

Summary

- Communications regarding EMS refers to delivery of information
 - Patient, scene information delivered to other key members of emergency response team

Summary

- Five phases of typical EMS events
 - Occurrence of event
 - Detection of need for emergency services
 - Notification, emergency response
 - EMS arrival, treatment, preparation for transport
 - EMS preparation for the next response
Summary

- Communication is a process by which one person or group transmits meaning to others
 - Sender encodes message that receiver decodes
 - Barriers to communication
 - Attributes of receiver
 - Selective perception
 - Semantic problems
 - Time pressures

Summary

- Proper verbal, written communications allow information delivery between members of emergency team, patient, community
 - Communications should be brief, clear, confidential
- EMS communications include simple and complex systems
 - Simple system includes desktop transceiver and two-way radio
 - Complex systems include high-power communication capabilities

Summary

- Operation modes used in EMS communication
 - Simplex mode permits only one person to talk at a time
 - Duplex mode allows two people to converse at the same time
 - Multiplex mode can transmit telemetry and voice simultaneously
 - Trunked systems use five or more repeaters that provide communication channels in busy systems
Summary

• Functions of effective dispatch communications system
 – Receiving, processing calls for EMS assistance
 – Dispatching, coordinating EMS resources
 – Relaying medical information
 – Coordinating with public safety agencies
 – Some emergency dispatchers provide prearrival instructions for patient care

Summary

• In the United States, the FCC regulates communications over the radio
 – Paramedic must be familiar with regulatory agencies
 – Must follow their guidelines
• EMS frequency ranges include VHF, UHF, and 800 MHz

Summary

• Standard format of transmission of patient information is wise idea
 – Allows for best use of communications systems
 – Allows physicians to receive details quickly about patient
 – Decreases chance of omitting any critical details
Questions?