Chapter 17
Hemorrhage & Shock

Chapter Goal
- Use assessment findings to formulate field impression and implement treatment plan for patient with hemorrhage or shock

Learning Objectives
- Describe epidemiology, including morbidity, mortality, & prevention strategies for shock & hemorrhage
- Discuss anatomy & physiology of cardiovascular system
- Predict shock & hemorrhage based on mechanism of injury
- Discuss various types & degrees of hemorrhage & shock
- Discuss pathophysiology of hemorrhage & shock
Learning Objectives

- Discuss assessment findings associated with hemorrhage & shock
- Identify need for intervention & transport of patient with hemorrhage or shock
- Discuss treatment plan for & management of hemorrhage & shock
- Discuss management of external hemorrhage
- Differentiate between controlled & uncontrolled hemorrhage

Learning Objectives

- Differentiate between administration rate & amount of IV fluid in patient with controlled vs. uncontrolled hemorrhage
- Relate internal hemorrhage to pathophysiology of compensated & decompensated hemorrhagic shock
- Relate internal hemorrhage to assessment findings of compensated & decompensated hemorrhagic shock
- Discuss management of internal hemorrhage

Learning Objectives

- Define shock based on aerobic & anaerobic metabolism
- Describe incidence, morbidity, & mortality of shock
- Describe body's physiological response to changes in perfusion
- Describe effects of decreased perfusion at capillary level
- Discuss cellular ischemic phase related to hemorrhagic shock
Learning Objectives

- Discuss capillary stagnation phase related to hemorrhagic shock
- Discuss capillary washout phase related to hemorrhagic shock
- Discuss assessment findings of hemorrhagic shock
- Relate pulse pressure changes to perfusion status

Learning Objectives

- Relate orthostatic vital sign changes to perfusion status
- Define compensated & decompensated shock
- Discuss pathophysiological changes associated with compensated shock
- Discuss assessment findings associated with compensated shock

Learning Objectives

- Identify need for intervention & transport of patient with compensated shock
- Discuss treatment plan & management of compensated shock
- Discuss pathophysiological changes associated with decompensated shock
- Discuss assessment findings associated with decompensated shock
- Identify need for intervention & transport of the patient with decompensated shock
Learning Objectives

- Discuss treatment plan & management of patient with decompensated shock
- Differentiate between compensated & decompensated shock
- Relate external hemorrhage to pathophysiology of compensated & decompensated hemorrhagic shock
- Relate external hemorrhage to assessment findings of compensated & decompensated hemorrhagic shock
- Differentiate between normotensive, hypotensive, & profoundly hypotensive

Learning Objectives

- Differentiate between administration of fluid in normotensive, hypotensive, & profoundly hypotensive
- Discuss physiological changes associated with pneumatic anti-shock garment (PASG)
- Discuss indications & contraindications for application & inflation of PASG
- Apply epidemiologic principles to develop prevention strategies for hemorrhage & shock

Learning Objectives

- Integrate pathophysiological principles to assessment of hemorrhage or shock patient
- Synthesize assessment findings & patient history to form field impression for hemorrhage or shock patient
- Develop, execute, & evaluate treatment plan based on field impression for hemorrhage or shock patient
Introduction

- Oxygen intake & use

Introduction

The Fick principle

- Cellular metabolism
 - Begins with food being broken down
 - Aerobic metabolism
 - Oxygen plays important role
Cardiovascular System

- Closed system

Cardiovascular System

Stroke volume

Preload

Cardiovascular System

Afterload

Blood pressure
Blood

- Functions
 - Transportation
 - Regulation
 - Protection

- Plasma
 - Major proteins
 - Albumin
 - Globulin
 - Fibrinogen

Blood

- Cells of blood
 - Erythrocytes
 - Leukocytes
Blood

- Platelets
 - Not cells
 - Suspended
 - Essential

- Viscous fluid
 - Viscosity

- Cardiovascular system—closed system

Soft-Tissue Trauma

- Closed wounds
 - Contusions & hematomas
 - Blunt trauma
 - Vessels torn
 - Swelling or hematoma
 - Treatment
 - Cold
 - Compression
 - Elevation
 - Immobilization
Soft-Tissue Trauma

Closed wounds

- Crush injuries
 - Extremities, torso, or pelvis
 - Blood vessel injury; internal organ rupture
- Symptoms
 - Pain
 - Paresis
 - Weakness
 - Parasthesia
 - Pallor
 - Pulselessness

Soft-Tissue Trauma

Closed wounds

- Crush injuries
 - Treatment
 - Airway & breathing
 - High-concentration O2
 - Fluids
 - Immobilization
 - Rapid transport

Soft-Tissue Trauma

Closed wounds

- Compartment syndrome
 - Surgical emergency
 - Blunt trauma
 - Bleeding, swelling, & increased pressure in closed area
- Signs and symptoms
 - Extreme pain
 - Swelling
 - Tenderness
 - Weakness of involved muscle groups
- Treatment
 - Same as for crush injuries
Soft-Tissue Trauma

Closed wounds
- Crush syndrome
 - Life-threatening
 - Prolonged compression
 - Rare
- Signs & symptoms
 - Appear after patient is released from crushing source
 - Shock
 - Possible metabolic acidosis
- Treatment
 - Airway & ventilatory support
 - High-concentration O₂
 - Maintenance of body temperature
 - Rehydration
 - Possible pharmacological treatment or tourniquets
 - Surgical intervention if extrication not possible

Open wounds
- Abrasions
 - Outermost layer of skin
 - Loss of body fluids
- Signs & symptoms
 - Pain
- Treatment
 - Clean wound

- Lacerations
 - Tear, split, or incision
 - May be caused by blunt or penetrating trauma
- Signs & symptoms
 - Pain
 - Bleeding
- Treatment
 - Control bleeding
 - Prevent contamination
 - Monitor for hemorrhagic shock
Soft-Tissue Trauma

Lacerations

Soft-Tissue Trauma

- Open wounds

 - Punctures
 - Sharp, pointed objects
 - Underlying tissues
 - Appear minor—internal bleeding
 - Signs & symptoms
 - Pain
 - Bleeding
 - Treatment

 - Avulsions
 - Tearing away
 - Signs & symptoms
 - Pain
 - Bleeding
 - Treatment
 - If tissue attached
 - Cleanse area
 - Return skin to normal position as much as possible
 - Control bleeding
 - Apply dressing
 - If tissue detached
 - Treat as amputation

• Soft-Tissue Trauma
Soft-Tissue Trauma

- Open wounds
 - Amputation
 - Partial or complete loss
 - Major bleeding
 - Life threatening
 - Signs & symptoms
 - Pain
 - Bleeding
 - Treatment
 - Control bleeding
 - Place amputated part in sterile dressing (moistened per local protocol)
 - Place part in plastic bag

Hemorrhage

- External bleeding
 - Arterial
 - Venous
 - Capillary

Hemorrhage

- Stage 1
 - ≤15% loss
 - BP maintained
 - Normal pulse pressure, respiratory rate, renal output
 - Skin pallor
 - Anxiety
Hemorrhage

- **Stage 2**
 - >15%-25% loss
 - ↓ Cardiac output
 - Reflex tachycardia
 - ↑ Respiratory rate
 - BP maintained
 - ↑ Diastolic pressure
 - Narrow pulse pressure
 - Diaphoresis
 - Normal renal output
 - Anxiety, confusion

- **Stage 3**
 - <25%-35% loss
 - Signs of hypovolemic shock
 - Tachycardia
 - Tachypnea
 - ↓ Systolic pressure
 - 5-15 mL/hr urine output
 - Altered mental status
 - Diaphoresis, cool, pale skin

- **Stage 4**
 - >35% loss
 - Extreme tachycardia
 - Extreme tachypnea
 - Significantly ↓ systolic BP
 - Confusion, lethargy, unconsciousness
 - Diaphoresis, cool, extremely pale skin
Hemorrhage

- Assessment
 - Amount of visible loss not good way to judge severity

Physiological Response to Hemorrhage

- Apply direct pressure with gloved hand, sterile, absorbent dressing
- Check entire extremity for skeletal injuries; do not elevate until splinted

Physiological Response to Hemorrhage

- If blood soaks through, place additional dressings on top
- Continue to apply manual pressure
Physiological Response to Hemorrhage

- Internal bleeding
 - Blunt, penetrating trauma
 - Acute/chronic illnesses
 - Hemodynamic instability
 - Higher morbidity/mortality
 - Assessment
 - Management

- Assessment
 - Coughing up red, frothy blood
 - Vomiting blood
 - Melena
 - Hematochezia
 - Red urine
 - Dizziness, syncope
 - Orthostatic hypotension
 - Pain

- Management
 - Tenderness
 - Abdominal rigidity
 - Restlessness
 - Nausea/thirst
 - Weak, rapid pulse
 - Cool, clammy skin
 - Rapid, gasping breathing
 - Diaphoresis
Physiological Response to Hemorrhage

- Internal bleeding
 - Management
 - Rapid transport to definitive care
 - Keep warm
 - Treat for shock

Shock

- The body’s response to poor perfusion
- When O_2 concentration, body compensates
 - Shunts blood from less essential systems
 - Baroreceptors help maintain BP
Shock

- Sympathetic nervous system is stimulated
 - Norepinephrine & epinephrine released
 - Beta 1 receptors stimulated
 - ↑ Dromotropy
 - ↑ Chronotropy
 - ↑ Inotropy
 - Beta 2 receptors stimulated
 - Bronchodilation
 - GI smooth muscle dilation
 - Alpha 1 receptors stimulated
 - Smooth muscle constriction in peripheral arterioles & venules
 - ↓ BP
 - ↓ Container size
 - ↓ Circulation to vital organs; ↑ circulation to rest of body
Shock

- O_2, CO_2, pH change—detected by chemoreceptors
- ↑CO_2 and/or ↓O_2 initiate sympathetic response
Capillary & Cellular Changes

- Ischemia
 - Cells shift from aerobic to anaerobic metabolism
 - ↑ lactic acid
 - ↑ H+
 - ↓ pH
 - Metabolic acidosis
 - If unresolved, eventual cellular death

- Precapillary sphincter relaxation
 - In response to
 - Lactic acid
 - Vasomotor failure
 - ↑ CO₂

- Postcapillary sphincter remains constricted
 - Capillaries become engorged with fluid

- As arteries dilate, ↓ cardiac output
Stages of Shock

- Compensated (nonprogressive)
 - Body initiates corrective action to normalize cardiac output & arterial BP
 - Signs & symptoms:
 - Altered LOC, restlessness
 - ↑ HR
 - ↑ Respiratory rate
 - Pale, cool skin

- Decompensated (progressive) shock
 - Constriction of arterioles, venules
 - Immediate medical intervention
 - Signs & symptoms:
 - Additional ↑ HR & respirations
 - Cool clammy skin
 - ↓ Capillary refill
 - Thirst
 - Diaphoresis
 - ↑ anxiety, confusion
 - Nausea & vomiting
 - Hypotension—late sign
Stages of Shock

Irreversible shock
- Rapid deterioration
- "Golden hour" theory
- Signs & symptoms
 - Marked ↓ LOC
 - ↓ Respiratory rate
 - Profound hypotension; inability to palpate pulse
 - ↓ HR
- Rapid assessment, transportation
Stages of Shock

- Keys to recognition, care
 - High level of suspicion
 - “Golden hour”
 - Do not rely on any one sign or symptom to determine degree of shock
 - Hypotension—late sign

- Patients at risk
 - Trauma patient
 - Elderly patients
 - Pregnant women

Types of Shock

- Hypovolemic
- Cardiogenic
- Neurogenic
- Anaphylactic
- Septic

Types of Shock

- Hypovolemia
 - Loss of blood or fluid
 - Bleeding
 - Burns
 - Dehydration
Types of Shock

- **Cardiogenic**
 - Heart failure
 - >40% left ventricular function
 - Myocardial infarction
 - Poor filling or obstruction
 - Cardiac tamponade
 - Tension pneumothorax
 - Bradycardia
 - Significant tachycardia
 - Dysrhythmias

- **Neurogenic**
 - Nervous system unable to control diameter of blood vessels
 - Vasodilation
 - Spinal shock
 - Flaccid paralysis distal to injury
 - Loss of bladder/bowel control
 - Priapism
 - Loss of thermoregulation

- **Anaphylactic**
 - Routes
 - Skin contact
 - Injections
 - Inhalation
 - Ingestion
 - Normally, antigen attacked by antibody
 - Anaphylaxis—antibody does not destroy antigen
 - Mast cells release histamine
 - Sudden, severe bronchoconstriction
 - Vasodilation
 - Fluid leakage from vessels
Types of Shock

- Anaphylactic shock

- Septic
 - Serious infection
 - Massive vasodilation

Differential Shock: Assessment

- Cardiogenic shock differentiated from hypovolemic shock by presence of
 - Chief complaint of chest pain, dyspnea, ↑ HR
 - HR
 - Signs of CHF
 - Dysrhythmia
Differential Shock: Assessment

- Distributive shock differentiated from hypovolemic shock by presence of
 - Mechanism suggesting vasodilation
 - Warm, flushed skin
 - Lack of tachycardia response

- Obstructive shock differentiated from hypovolemic shock by presence of signs &
 symptoms suggestive of cardiac tamponade or tension pneumothorax

Assessment & Management

- Goals of prehospital care
 - Ensure patent airway
 - Provide adequate oxygenation & ventilation
 - Restore perfusion
 - Stop cause
 - Volume replacement

Assessment & Management

- Level of responsiveness
 - Best indicator of perfusion status
 - Watch for
 - Restlessness
 - Agitation
 - Disorientation
 - Confusion
 - Inability to respond to questions or commands
 - Combativeness
 - Unresponsiveness
Assessment & Management

● Airway
 ➢ Assessment
 • Ensure patent airway
 ➢ Management
 • Airway adjunct
 • Suction if necessary
 • Clear obstructions
 • Place patient on side if no cervical injury suspected

Assessment & Management

● Breathing and oxygenation
 ➢ Assessment
 • Compensatory hyperventilation or hypoventilation
 ➢ Management
 • Assist ventilation if necessary
 • High-concentration O₂

Assessment & Management

● Circulation
 ➢ Assessment
 • Rate & character of pulse
 • Location of palpable pulse—indicator of systolic BP
 • Skin color, appearance, temperature
 • Capillary refill (if <6 yrs of age)
Assessment & Management

• Circulation
 ➢ Management
 • High-concentration O₂
 • Elevate legs
 • Fluid therapy
 • PASG per local protocol
 • Transport per local protocol
 • Consider appropriate pharmacological therapies
 ➢ Positioning
 • Elevate legs 10-12" unless respiratory condition warrants otherwise

Assessment & Management

• Fluid replacement
 ➢ Per local protocol

• Blood preparations
 ➢ Only erythrocytes can replace erythrocytes

Assessment & Management

• PASG
 ➢ Indications
 • Hypovolemic shock
 • Pelvic & leg fractures
 • Criteria
 • BP <90 mm Hg with signs of shock
 • Per local protocol
 ➢ Contraindications
 • Absolute—pulmonary edema
 • Respiratory distress
 • Exsanguination
 • Impaled object
 ➢ Complications
 • Chest injuries
Assessment & Management: Applying PASG

- Place unfolded PASG on spine board
- Logroll patient onto spine board
- Check all valves to ensure leg compartments are open & abdominal compartments are closed

Assessment & Management

- Inflate garment
- Close valves
- Reassess patient

Assessment & Management

- Maintain body temperature
- Focused history & physical examination
 - When time & condition permits
 - Important to continually re assess vital signs
- Transport considerations
 - Recognize indications for rapid transport
 - Ground or air transport
 - Appropriate facility
 - Notify receiving facility
Summary

- Shock develops in 3 successive stages
- 1st stage—when body fails to compensate for insult
- As shock progresses—O₂ supply to cells ↓
 - Cells resort to anaerobic metabolism

Summary

- Evaluation of trauma patient is begun in initial assessment
- Evaluating patient for hemorrhage includes looking for internal & external bleeding
- Pathophysiology of hemorrhage & MOI are important in developing treatment plan

Summary

- Treatment for shock includes adequate ventilation & O₂ & further prevention of shock process. Rapid transport is imperative
- ↓ BP is late sign of shock— not sole indicator of present shock
- Long-term survival of body is dependent on delivery of adequate amounts of O₂ & glucose to individual cells via blood
Summary

- Shock is inadequate perfusion to tissues & cells.
- Decreased blood flow may occur secondary to hemorrhage, pump failure, or inappropriate systemic vascular resistance.
- One’s body tries to compensate for damage by utilizing several mechanisms.

Summary

- Anaerobic metabolism produces several abnormal acids; best known is lactic acid.
- Accumulation of acids changes pH, resulting in acidosis.

Questions?