Chapter 23
Cardiovascular Anatomy & Physiology and ECG Interpretation

Chapter Goal
- Analyze & interpret ECGs/cardiac dysrhythmias

Learning Objectives
- Explain & defend purpose of ECG monitoring
- Describe how ECG waveforms are produced
- Correlate electrophysiological & hemodynamic events occurring throughout entire cardiac cycle with various ECG waveforms, segments, & intervals
- Identify how heart rates may be determined from ECG recordings
Learning Objectives

- List ECG limitations
- Describe systematic approach to analysis & interpretation of cardiac dysrhythmias
- Explain how to confirm ventricular fibrillation & asystole using 3-lead ECG

Anatomy & Physiology Review

- Heart (myocardium)
 - Right & left sides separated by interventricular septum
 - Endocardium—inner lining
 - Pericardium—set of 2 membranes surrounding heart
 - Visceral
 - Parietal
 - Atria—upper chambers
 - Ventricles—lower chambers

Anatomy & Physiology Review

- Deoxygenated blood → right atrium (via superior and inferior venae cavae) → tricuspid valve → right ventricle → pulmonary (semilunar) valve → main pulmonary artery → lungs

- Oxygenated blood → left atrium (via pulmonary veins) → mitral (bicuspid) valve → left ventricle → aortic (semilunar) valve → aorta
Cardiac cycle
- Begins with onset of cardiac contraction; ends with beginning of next contraction
- Pressure changes cause blood movement
 - From areas of high pressure to areas of low pressure
- Systole—contraction of atria & ventricles with simultaneous pumping of blood vessels
 - Systolic BP—pressure within arteries during systole
- Diastole—relaxation phase; blood fills heart
 - Diastolic BP—pressure during this phase & indicator of myocardial perfusion

Cardiac output
- Cardiac output = Stroke volume × Heart rate
- Starling’s law of the heart
- Ejection fracture
Anatomy & Physiology Review

- **Vascular system & circulation**
 - Arteries carry blood away from heart to body
 - Veins carry blood from body back to heart
 - Arterioles divide into capillaries
 - Venules merge to become veins
 - Veins merge to become superior & inferior venae cavae
 - **Afterload**—workload against which heart must pump
 - **Preload**—amount of blood heart must pump
 - **Pulmonary circulation**—carries deoxygenated blood through lungs to left side of heart
 - Left ventricle pumps it to body via **systemic circulation**

- **Coronary circulation**
 - Right main coronary artery
 - Nodal artery
 - Descending right artery
 - Posterior descending artery
 - Left main coronary artery
 - Left anterior descending artery
 - Diagonal artery
 - Circumflex artery
Electrophysiology

- Myocardial cells have 4 unique characteristics:
 - Automaticity
 - Excitability
 - Conductivity
 - Contractility
Electrophysiology
- **Absolute refractory period**—time when no stimulus will depolarize myocyte.
- **Relative refractory period**—time when sufficiently strong stimulus will depolarize myocardium.

Regulation of heart function
- **Chronotropy**
 - Heart rate
- **Dromotropy**
 - Rate of electrical conduction
- **Inotropy**
 - Strength of contraction

Baroreceptors
- Sensory nerve endings that detect changes in BP & send messages to CNS
 - Carotid sinus
 - Aortic arch
 - Atria
 - Vena cava

Chemoreceptors
- Receptors in blood vessels that detect changes in chemical composition of blood
 - Medulla
 - Aortic arch
 - Carotid bodies
Anatomy & Physiology Review

- Regulation of heart function
 - Parasympathetic stimulation
 - ↓ HR
 - Primarily affects AV node
 - Sympathetic stimulation
 - Alpha effects—vasoconstriction
 - Beta effects—↑ inotropy, dromotropy, chronotropy
 - Epinephrine
 - Greater stimulatory effect on beta receptors
 - Norepinephrine
 - Greater stimulatory effect on alpha receptors

ECG Monitoring

Components of normal ECG

- P wave
- QRS complex
- T wave

ECG Monitoring

Components of normal ECG
ECG Monitoring
Evaluate rate: Method 1

ECG Monitoring
Evaluate rate: Method 2

ECG Monitoring
Determine rhythm regularity
ECG Monitoring

Determine rhythm regularly.

3. by counting the small squares
between the P waves. *If calipers are not available, mark off the
distance between one P wave on a piece of
tape and compare this distance with the other
P-P intervals.

Regularly
Irregular rhythm

Occasionally
Irregular rhythm

Irregularly
Irregular rhythm

Abnormal P waves
ECG Monitoring

Normal P waves

Evaluate QRS complex

Normal QRS complexes

Evaluate QRS complex

Abnormal QRS complexes
ECG Monitoring

Normal PR intervals

ECG Monitoring

Abnormal PR intervals

ECG Monitoring

Evaluate ST segment

ECG Monitoring

- Evaluate QT interval
- Evaluate T waves
- Evaluate U waves

Muscular tremor
AC interference
Loose electrodes

Biotelemetry interference
Chest compressions
Dysrhythmias

- Originate in SA node
 - Normal sinus rhythm
 - Sinus bradycardia
 - Sinus tachycardia
 - Sinus dysrhythmia
 - Sinus arrest

Dysrhythmias

- Originate in atria
 - Wandering atrial pacemaker
 - Premature atrial complexes
 - Supraventricular tachycardias
 - Atrial flutter
 - Atrial fibrillation

Dysrhythmias

- Originate in AV junction
 - Junctional rhythms
 - Premature junctional complex
 - Junctional escape complexes
 - Accelerated junctional rhythm
 - Junctional tachycardia
Dysrhythmias

- Originate in ventricles
 - PVCs
 - Bigeminal
 - Trigeminal
 - Quadrigeminal
 - Frequent
 - Couple
 - Ventricular tachycardia
 - Ventricular escape complexes
- Accelerated idioventricular rhythm
- Ventricular tachycardia
 - Monomorphic
 - Polymorphic
- Ventricular fibrillation
- Asystole
- Pulseless electrical activity

Dysrhythmias: NSR, SB, ST

Dysrhythmias: Sinus Dysrhythmias
Dysrhythmias: Sinus Arrest

Dysrhythmias: Wandering Atrial Pacemaker

Dysrhythmias: Premature Atrial Complex
Dysrhythmias: PVCs/VT

Dysrhythmias: Ventricular Escape Complexes

Dysrhythmias: Ventricular Tachycardia
Dysrhythmias

- Disorders of conduction
 - Heart blocks
 - First-degree AV block
 - Second-degree AV block, Mobitz type I
 - Second-degree AV block, Mobitz type II
 - Third-degree heart block

Dysrhythmias: First-Degree AV Block

Dysrhythmias: Second-Degree AV Block, Mobitz Type I (Wenckebach)
Dysrhythmias: Second-Degree AV Block, Mobitz Type II

Dysrhythmias: Third-Degree AV Block

Dysrhythmias: Identifying Heart Blocks
Dysrhythmias

- Pacemaker rhythms
 - Ventricular pacemaker
 - Atrial pacemaker
 - AV sequential pacemaker
- Disturbances of ventricular conduction
 - Delays in electrical conduction
 - Possible sites of block
- Preexcitation syndromes
 - Wolff-Parkinson-White syndrome
 - ECG features

Dysrhythmias

- Atrial pacing
- Ventricular pacing
- AV sequential pacing

Dysrhythmias: Bundle Branch Blocks

- Right bundle branch
- Left anterior hemi-branch
- Complete LBBB
- LBBB

Dysrhythmias
Dysrhythmias: Bundle Branch Blocks

Normal ventricular conduction

Dysrhythmias: Bundle Branch Blocks

Left bundle branch block

Right bundle branch block

Dysrhythmias: Left Anterior Hemiblock

Lead I

Lead II

Left anterior hemiblock

Lead aV1
Dysrhythmias: Wolff-Parkinson-White Syndrome

<table>
<thead>
<tr>
<th>Normal conduction</th>
<th>WP Wolff-Parkinson-White Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual appearance when QRS complex is upright</td>
<td> or Delta</td>
</tr>
<tr>
<td>Usual appearance when QRS complex is negative</td>
<td> or Delta</td>
</tr>
</tbody>
</table>

Dysrhythmias

- ECG changes due to electrolyte imbalances
 - Potassium (K+)
 - Hyperkalemia
 - Peaked T waves
 - Flattened P waves
 - Prolonged PR interval
 - Widened QRS complex
 - Deepened S waves; merging of S & T waves
 - Multiventricular rhythm
 - VT
 - Sine wave-appearing ECG
 - VF, cardiac arrest

Dysrhythmias

<table>
<thead>
<tr>
<th>Normal</th>
<th>Mild to Moderate Hyperkalemia</th>
<th>Marked Hyperkalemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| T waves are tall and peaked with a narrow base; P wave amplitude decreases. The QRS complex widens and ultimately becomes sawtooth.
Dysrhythmias

- ECG changes due to electrolyte imbalances
 - Potassium (K+)
 - Hypokalemia
 - U waves
 - T-wave flattening
 - ST-segment changes (nonspecific)
 - Prolongation of QT interval
 - Dysrhythmias
 - PEA, asystole
 - Changes due to hypothermia
 - No specific ECG changes
 - Most common ECG changes:
 - Early hypothermia—sinus tachycardia
 - Moderate to severe hypothermia—bradydysrhythmias
 - Severe hypothermia—refractory VF or asystole
 - Flutter waves
 - Irregularly irregular SV rhythm
 - Digitalis toxicity—atrial fibrillation with a slow, regular ventricular response
 - Pacer
 - Mobitz type II block
 - Wenckebach

Dysrhythmias

<table>
<thead>
<tr>
<th>Normal</th>
<th>Mild to Moderate Hypokalemia</th>
<th>Marked Hypokalemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- T waves become flattened
- ST segments may be depressed
- U waves develop
- U waves increase in size
- The QT (which is actually the QRS interval) is prolonged
Summary

- Heart’s function: pump blood throughout body
- Arteries transport blood away from heart
- Veins transport blood back to heart
- \(O_2 \), \(CO_2 \) & nutrients & waste carried by capillaries

Summary

- Electrical nerve impulses cause heart to contract
- Autonomic nervous system & hormones control heart rate
- ECG is record of electrical activity of heart
- P wave represents atrial contraction

Summary

- QRS complex represents impulses through ventricles
- T wave & possible U wave represent completion of repolarization
- PR and ST segments represent electrical pauses
Summary

- 2 common methods of ECG analysis:
 - Observe rhythm on oscilloscope
 - Print out rhythm

Summary

- Dysrhythmias are irregularities of heart rhythm:
 - Originating in:
 - Sinus node
 - Atria
 - AV junction
 - Ventricles
 - Disorders of conduction

Questions?