Chapter 5

Emergency Pharmacology

Chapter Goal

- Understand basic principles of pharmacology, & develop drug profiles for common emergency medications

Learning Objectives

- Differentiate among chemical, generic (nonproprietary), trade (proprietary), & official names of drugs
- Describe historical trends in pharmacology
- Describe schedules of drugs established by Drug Enforcement Administration
- List 5 main sources of drug products
- Describe how drugs are classified
Learning Objectives

- List authoritative sources for drug products
- Discuss special considerations in drug treatment with regard to pregnant, pediatric, & geriatric patients
- Discuss EMT-I’s responsibilities & scope of management pertinent to administration of medications
- Identify specific anatomy & physiology pertinent to pharmacology

Learning Objectives

- List & describe general properties of drugs
- List & describe liquid & solid drug forms
- List & differentiate routes of drug administration
- Differentiate between enteral & parenteral routes of drug administration
- Describe mechanisms of drug interactions
- List & differentiate phases of drug activity, including pharmaceutical, pharmacokinetic, & pharmacodynamic phases

Learning Objectives

- Describe pharmacokinetics, pharmacodynamics, theories of drug action, drug-response relationships, factors altering drug responses, predictable drug responses, iatrogenic drug responses, & unpredictable adverse drug responses
- Differentiate among drug interactions
- Discuss procedures & measures to ensure security of controlled substances administered by EMT-I
- Discuss considerations for storing drugs
Learning Objectives

- List the components of drug profile
- List drugs an EMT-I may administer in pharmacological management plan according to local protocol
- Integrate pathophysiological principles of pharmacology with patient assessment
- Synthesize patient history information & assessment findings to form field impression
- Synthesize field impression & implement pharmacological management plan

Introduction

- Quick decisions—difference between life & death
- Professional & legal responsibility
- Local protocol will dictate
- Drugs EMT-I may administer
 - Uses
 - Range of dosages
 - Methods of administration
 - Side effects

Introduction

- Essential to commit to memory:
 - Actions
 - Indications
 - Dosages
 - Side effects
 - Contraindications
 - Full understanding of safety precautions & legal aspects
Pharmacology & Drug Nomenclature

- What drugs are & how they work
 - Any substance when taken changes body’s functions
 - Commonly used in medicine
 - Available in many forms
 - Administered in variety of ways

Pharmacology & Drug Nomenclature

- What drugs are & how they work
 - Pharmacology:
 - Study of drugs
 - Actions
 - Dosages
 - Side effects

Pharmacology & Drug Nomenclature

- What drugs are & how they work
 - Pharmaceutical companies required to list:
 - Chemical compounds
 - Actions
 - Dosages
 - Side effects
 - Indications
 - Contraindications
Pharmacology & Drug Nomenclature

- What drugs are & how they work
 - Helpful hint
 - Prescription: written direction for preparation & administration of drug
 - Usually dispensed on order of physician
 - Some states—nurse practitioners, physician assistants
 - 4 names
 - Chemical
 - Generic
 - Official
 - Trade

Drug Legislation

- Pure Food & Drug Act
- Federal Food, Drug, & Cosmetic Act
- Harrison Narcotic Act of 1914
- Narcotic Control Act of 1956
- Controlled Substances Act of 1970

Drug Legislation

- Controlled substances established by Drug Enforcement Administration
 - Schedule I
 - Schedule II
 - Schedule III
 - Schedule IV
 - Schedule V
Regulating Agencies

- The Food and Drug Administration (FDA)
- Federal Trade Commission (FTC)
- Drug Enforcement Administration (DEA)
- The Public Health Service of U.S. Department of Health & Human Services

Sources of Drugs

- Plants
- Animals
- Minerals or mineral products
- Synthetic sources
- Microorganisms

Drug Classification

- By body system affected
- Class of agent identifies how drugs affect particular body systems
- Mechanism of action is how drug works physiologically
Sources of Drug Information

- Physician’s Desk Reference (PDR)
- American Hospital Formulary Service
- Compendium of Drug Therapy
- American Medical Association Drug Evaluation

Sources of Drug Information

- Drug inserts

Other
- Reference books
- Personal digital assistant (PDA)
- Internet

Standardization of Drugs

- Drugs sold must meet & maintain high standards
 - Therapeutic results
 - Patient safety
 - Packaging safety

- To meet standards drugs must go through strict & accurate testing
 - Assay method
 - Bioassay methods
 - FDA responsible for final approval
Special Considerations

- Pregnant patients
 - Benefits weighed against risks to fetus
 - Potential to harm fetus
 - Teratogenic effects
 - Metabolism in liver
 - FDA has established scale

Special Considerations

- Pediatric patients
 - Drug dosage based on
 - Child’s weight
 - Body surface area
 - Infants have immature livers & kidneys
 - Volume overload is serious problem

Special Considerations

- Geriatric patients
 - Drug-induced illness common
 - Polypharmacy
 - Absorption
 - Distribution
 - Therapeutic index
Scope of Management

- Basic principle of medicine:
 - “Primum non nocere”—“First do no harm”
 - Medications used
 - Among most potent
 - No room for error
 - Held responsible for:
 - Safe & therapeutically effective drug administration

- Procedures in using drug therapy
 - Use correct precautions & techniques
 - Observe & document
 - Keep current
 - Establish & maintain professional relationships
 - Understand pharmacology
 - Perform evaluations
 - Seek drug reference literature
 - Take drug history
 - Consult with medical control

Nervous System Components
Nervous System Components

Autonomic Nervous System

- Sympathetic division
 - Originates in brain
 - Primary effect—prepare for “flight or fight”
 - ↑ HR
 - Bronchiole dilation
 - ↑ Metabolism & strength
 - Sympathetic receptors
 - Alpha (α)-adrenergic
 - Beta (β)-adrenergic
 - Drugs that affect sympathetic nervous system
 - Sympathetic agonists
 - Beta blockers

- Parasympathetic division
 - Originates in brain
 - Causes increased activity in gut
 - Drug that affects parasympathetic nervous system
 - Atropine—acetylcholine antagonist
 - Muscarine
 - Pilocarpine
 - Organophosphates
 - Physostigmine
 - Neostigmine
 - Edrophonium
General Properties of Drugs

- Drugs commonly categorized by effects
 - Drug action
 - Drug effect

- Drug actions achieved by physiochemical interaction between drug and certain tissue components
 - Exert multiple actions
 - Do not confer new functions on tissue or organ
 - Only modify existing functions

General Properties of Drugs

- Drugs that interact with receptors:
 - Agonists
 - Antagonists
 - Partial agonists

- Once administered—go through 4 stages:
 - Absorption
 - Distribution
 - Biotransformation
 - Excretion

Drug Forms

- Most medications are injected in liquid form

- Available in unit-dose packages that contain:
 - Amount for single dose
 - Proper form for administration
 - Labeled with:
 - Trade name
 - Generic name
 - Precaution
 - Instructions for storage
 - Expiration date

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company
Drug Absorption

Routes for Drug Administration

- Route of administration crucial
 - Affects rate at which onset of action occurs
 - May affect therapeutic response
- Given for either local or systemic effects
- Selected because of:
 - Cost
 - Safety
 - Speed

Routes for Drug Administration

- Certain drugs may be:
 - Administered by only one route
 - Toxic if given by particular route
 - Not effective if given by certain route
 - Given for either local or systemic effects
 - Absorbed only by certain route
Routes for Drug Administration

- Intravenous
 - Common in prehospital setting
 - Quickest actions
 - Can be most hazardous

- Intramuscular
 - Common in nonemergency setting
 - Muscles highly vascular—absorption rapid

Routes for Drug Administration

- Enteral
 - Oral
 - Rectal

- Percutaneous
 - Topical
 - Sublingual
 - Buccal
 - Ocular
 - Nasal
 - Aural

Routes for Drug Administration

- Parenteral
 - Intravenous
 - Subcutaneous
 - Intramuscular
 - Intraosseous
 - Intradermal
 - Umbilical

- Pulmonary
 - Inhalation
 - Endotracheal
Mechanisms of Drug Action

- Local effect
- Systemic effect
- Therapeutic effect

Pharmacokinetics

- Movement of drugs
 - Absorption
 - Distribution
 - Metabolism
 - Excretion
Pharmacokinetics
- Distribution
- Metabolism

Pharmacokinetics
- Excretion

Pharmacodynamics
- Study of effects of drugs on body
- Receptor theory
Pharmacodynamics

- Drug-response factors
 - Effects of drug can be determined by measuring:
 - Plasma level profile
 - Biological half-life
 - Therapeutic threshold
 - Therapeutic index

- Factors altering drug responses:
 - Age
 - Body mass
 - Gender
 - Environment & time of administration
 - Existing pathology

Pharmacodynamics

- Predictable responses
 - Desired actions vs. side effects

- Iatrogenic responses
 - Mimic naturally occurring disease states
Pharmacodynamics: Unpredictable Responses

- Synergism
- Potentiation
- Antagonism
- Hypersensitivity
- Idiosyncratic reaction
- Tolerance
- Drug allergy
- Delayed reaction
- Anaphylactic reaction
- Cross-tolerance
- Drug dependence
- Tachyphylaxis
- Cumulative effect
- Drug toxicity

Drug Interactions—Variables

- Absorption
- Competition for plasma protein binding
- Drug metabolism or biotransformation
- Action at receptor site
- Renal excretion
- Alteration of electrolyte balance
- Drug-drug interactions
- Drug-induced malabsorption of foods & nutrients
- Food-induced malabsorption of drugs
- Alteration of enzymes
- Alcohol consumption
- Cigarette smoking
- Food-initiated alteration of drug excretion
- Drug incompatibilities

Drug Interactions

- Examples
 - Bronchodilators
 - Diuretics
 - Procainamide
 - Antihypertensives
 - Amiodarone
 - Opioid analgesic
 - Aspirin
Drug Profile Components

- Drug names
- Body system
- Class of agent
- Mechanism of action
- Drug actions, pharmacokinetics, & indications
- Contraindications & side effects
- Dosage
- Routes of administration
- How supplied
- Special considerations

Drugs Administered by EMT-I

- Adenosine
- Aspirin
- Albuterol
- Atropine sulfate
- Dexamethasone
- Diazepam
- 50% dextrose
- Epinephrine
- Furosemide
- Ipratropium

Drugs Administered by EMT-I

- Isoetharine
- Lidocaine
- Metaproterenol
- Methylprednisolone
- Morphine sulfate
- Naloxone
- Nitroglycerin
- Salmeterol
- Terbutaline
- Triamcinolone
Summary

- A drug is any substance that, when taken into body, changes one or more bodily functions
- Drugs may have as many as 4 names, including chemical, generic, official, & trade names
- Drugs may have natural sources, such as plants, minerals, or animals, or they may be synthesized in laboratory

Summary

- Consumers in U.S. are protected by several regulations regarding drugs
- Liquid drugs administered into body via subcutaneous, intramuscular, or intravenous (IV) routes are called parenteral drugs
- The routes used by EMT-I to administer drugs include sublingual, IV, subcutaneous, inhalation, endotracheal, & transdermal
- Administering drugs carries tremendous responsibility

Questions?