Chapter 6

Venous Access

Chapter Goal

- Understand basic principles of venous access & IV therapy, as well as relate importance of employing appropriate BSI precautions when employing these precautions

Learning Objectives

- Describe indications, equipment needed, techniques used, precautions, & general principles of:
 - Peripheral venous cannulation
 - Obtaining blood sample
 - External jugular cannulation
 - Disposal of contaminated items & “sharps”
Introduction

- Intravenous (IV) cannulation
 - Placement of catheter into vein
 - Used to administer:
 - Blood
 - Fluids
 - Medications
 - Used to obtain blood samples
 - Medical direction or standing orders typically required

Indications:
- Cardiac disease
- Hypoglycemia
- Seizures
- Shock
 - Hypovolemic shock—to counter blood loss
 - Medical emergencies—to establish route for medication administration
 - Administer drugs in prehospital setting
 - Precautionary measure

Precautions:
- Bleeding
- Infiltration
- Infection

Contraindications:
- Sclerotic veins
- Burned extremities
- Do not delay transport to start IV
Introduction

- Body substance isolation precautions
 - Substances potentially infected with
 - Hepatitis B virus (HBV)
 - Human immunodeficiency virus (HIV)
 - Wash hands:
 - Before & after
 - Immediately on contact
 - Wear gloves, gown, mask, eye protection
 - HBV vaccine

Introduction

- Needle stick injuries
 - 600,000 to 800,000 per year
 - Hepatitis C & AIDS
 - Devices to help reduce risk
 - Needleless systems—no needle
 - Needle safety systems—built-in physical attribute
 - Passive & active devices
 - Active device requires activation
 - Passive device does not

Introduction

- Rules for avoiding injuries:
 - Use alternatives
 - Assist in selecting & evaluating devices
 - Use safety devices provided
 - Proper handling, disposal, use of barriers
 - Avoid recapping, bending, breaking, recapping needles
 - Avoid separating from syringe, manipulating by hand
 - Safe handling & disposal
 - Dispose of used needles promptly
 - Report injuries
 - Tell employer about hazards
 - Attend training
Introduction

- IV supplies & equipment
 - IV solution
 - Administration set
 - Extension set
 - Needles, catheters
 - Gloves, gown, goggles
 - Tourniquet
 - Tape, dressing
 - Antibiotic swabs, ointment
 - Gauze dressings
 - Syringes
 - Vacutainer
 - Blood tubes
 - Armboards

Introduction

- IV Solutions
 - Solutions & osmotic pressure
 - Described by tonicity
 - Isotonic solution
 - Hypotonic solution
 - Hypertonic solution
 - Crystalloids
 - Normal saline
 - Lactated Ringer's

Introduction

- Crystalloids
 - Dissolved ions cross cell membrane
 - Sodium chloride 0.9% solution/lactated Ringer's solution
 - 5% dextrose in water (D5W)
Introduction

- Sodium chloride 0.9% solution & lactated Ringer’s solution
 - Recommended IV use in prehospital setting
 - Used to:
 - Expand intravascular volume
 - Replace extracellular fluid losses
 - Administer with blood products—only solution

- 5% dextrose in water (D5W)
 - Was mainstay in management of medical emergencies
 - In cardiac arrest—no longer considered preferred
 - Slightly acidotic
 - Local EMS protocols will dictate

Introduction

- IV solution containers
 - Size of bag varies

Introduction

- IV solution containers
 - 2 ports at bottom of bag
 - Labeled with:
 - Contents
 - Expiration date
Introduction

- Administration set
 - Clear plastic tubing
 - Range from 60–110 inches

Introduction

Piercing spike

Introduction

Microdrip
Macro drip
Introduction

- Rates for administering IV fluids
 - Medical emergencies—TKO rate
 - Trauma—based on patient’s response

Introduction

- Changing philosophy for hypovolemic shock—no clear rule
 - Shock, external bleeding uncontrolled—only enough to maintain BP
 - Uncontrolled internal bleeding—surgical intervention
 - Regardless of flow rate—limited to 2–3 L
Introduction

- Blood tubing
 - Some EMS systems use in patients with hypovolemia
 - EMTs who work in critical care areas
 - 2 types of blood tubing
 - Y-tubing
 - Straight tubing

Introduction

- Volume control
 - Volutrol chamber
 - For specific amount of fluid to be administered
 - Pediatrics
 - Renal failure
 - Administer precise medications
Introduction

- Volume control chamber IV tubing

Equipment

- Protected Needles
 - Shielding/Retracting
 - Self-blunting

- IV Catheter Size
 - Outside diameter is “gauge”
 - Larger gauge number—smaller diameter
 - Large diameter—greater fluid flow
 - Color-coded system
Equipment

- **Choosing best size over-the-needle catheter**
 - Smaller-sized devices are better
 - Except for volume replacement
 - Causes less injury
 - Allows greater blood flow
- **Large-bore catheters**
 - Shock
 - Cardiac arrest
 - Viscous medications
 - Life-threatening emergencies—rapid fluid replacement
 - Minimum 18-gauge catheter—patients requiring blood
- **Catheter’s length**—longer catheter = slower rate

Equipment

- **Other supplies & materials**
 - Latex, rubber or nonlatex gloves
 - Tourniquet
 - Alcohol preparations
 - Sterile dressings
 - Adhesive tape
 - Commercial transparent dressings
 - Armboards
 - 10 or 35-mL syringe or Vacutainer
 - Assorted blood collection tubes

Equipment

- **Intermittent infusion device**
 - Eliminates need for IV bag & administration
 - Keeps access device sterile
 - Self-sealing
 - Constant venous access—not continuous infusion
Equipment

- IV solution warming devices
 - Temperature of IV fluids vary
 - Infusion < normal body temperature
 - Appliances designed to:
 - Maintain IV fluid at normal body temperature
 - Prevent overheating
 - Hot sack

Peripheral Venous Cannulation

- Veins have 3 layers—Tunica intima, Tunica media, Tunica adventitia

Peripheral Venous Cannulation

- Skin has 2 layers
 - Epidermis
 - Outermost layer
 - Protective covering
 - Varies in thickness
 - Dermis
 - Highly vascular & sensitive
 - Many capillaries
 - Thousands of nerve fibers
Peripheral Venous Cannulation

- Noncritical patients
 - Distal veins on dorsum of hands and arms

- Use vein with these characteristics:
 - Fairly straight
 - Easily accessible
 - Well-fixed—not rolling
 - Feels springy

Sites to be avoided:
- Sclerotic veins
- Veins near joints
- Areas where arterial pulse is palpable
- Veins near injured areas
- Veins near edematous extremities
Peripheral Venous Cannulation

- Sites used in cardiac arrest:
 - Peripheral veins of antecubital fossa
 - Largest
 - Most visible
 - Most accessible
 - Distal veins are least desirable
 - Blood flow markedly diminished
 - Difficult or impossible to cannulate

- Other sites
 - External jugular vein
 - Peripheral leg veins
 - Intraosseous

Performing IV Cannulation

- Insert spiked piercing end of administration set into tubing of IV bag
- Squeeze drip chamber to fill halfway
Performing IV Cannulation

- Place tourniquet 6 inches above venipuncture site
- Make slip knot with tourniquet

Performing IV Cannulation

- Complete band placement
- Use povidone-iodine (use protocol) or alcohol wipe to cleanse site

Performing IV Cannulation

- Pull skin taut; bevel of needle should be facing up
- Penetrate vein either from top or side
Performing IV Cannulation

- Watch for blood in flashback chamber
- Advance needle until tip of catheter is sufficiently within vein
- Slide catheter into vein until hub rests against skin

Performing IV Cannulation

- Remove needle from vein & catheter
- Properly dispose of used needle

Performing IV Cannulation

- Draw sample of blood
- Release tourniquet
Performing IV Cannulation

- Open IV control valve; ensure IV fluid is flowing properly
- Secure catheter & tubing with tape/commercial device

Performing IV Cannulation

- After venipuncture is performed:
 - Confirm needle placement
 - Blood may not flow back
 - If infiltration occurs:
 - Remove & discard catheter
 - Place dressing on venipuncture site
 - Attempt venipuncture at another site
 - Other methods of determining proper placement of catheter:
 - Lower IV bag below IV site
 - Palpating vein above IV site
 - Palpating tip of catheter in vein
 - Aspirating blood with 10-mL syringe

Peripheral IV Access
Performing IV Cannulation

- Using an armboard
 - Can be avoided—choose site away from flexion areas
 - May be necessary when:
 - Venipuncture device inserted near joint
 - Venipuncture device inserted in dorsum of hand
 - Used along with restraints

Performing IV Cannulation

- Regulating fluid flow rates
 - Primary aspect
 - Too fast or too slow—cause complications
 - Adjust according to protocol
 - Formula
 - Flow rate established—check on ongoing basis

Performing IV Cannulation

- Regulating fluid flow rates
 - Factors that can cause flow rate to vary:
 - Vein spasm
 - Vein pressure changes
 - Patient movement
 - Manipulations of clamp
 - Bent, kinked tubing
 - IV fluid viscosity
 - Height of infusion bag
 - Type of administration set
 - Size & position of venous access device
Performing IV Cannulation

- Regulating fluid flow rates
 - Assess flow rate more frequently
 - Condition can be exacerbated by fluid overload
 - Pediatric patients
 - Elderly patients
 - Patients receiving drug that can cause tissue damage if infiltration occurs

Performing IV Cannulation

- Document
 - Date/time
 - Type/amount of solution
 - Type of device used
 - Venipuncture site
 - Number of attempts & location for each
 - IV flow rate
 - Adverse reactions & actions taken
 - Name/identification number of person initiating infusion

When IV Fluid Does Not Flow
Performing IV Cannulation

- Complications
 - Pain
 - Catheter shear
 - Circulatory overload
 - Cannulation of artery
 - Hematoma or infiltration
 - Local infection
 - Air embolism
 - Pyrogenic reaction

Intermittent Infusion Device

- Prime device with dilute heparin/saline solution
- Cannulate vein

Intermittent Infusion Device

- Connect intermittent device to hub of IV catheter
- Connect saline/heparin-filled syringe to access port
 - Slowly aspirate until blood is seen
 - Inject 3–5mL dilute heparin/saline
Drawing Blood

- Acquire blood samples for analysis
- Commonly used in field setting
- Draw samples immediately after venipuncture
- Blood-drawing equipment

Drawing Blood

- Variety of sizes & types
- Several colors & patterns
- During manufacture—vacuum created
- Filled by drawing blood from vein with syringe
- Tube filled completely
- Tube labeled
- Stored in plastic “zip-lock” bag

Changing IV Bag

- Typically occurs when directed to continue IV after bag is empty

Steps
- Remove cover from IV tubing port
- Occlude flow
- Remove spike
- Insert spike into new IV bag
- Open roller clamp to appropriate flow rate
Discontinuing IV Line

- Close flow control valve completely
- Do not disturb catheter—remove dressing
- Hold 2 x 2 dressing above site to stabilize tissue while withdrawing catheter
- Remove catheter by pulling straight back
- To prevent blood loss
 - Cover site with 2 x 2 dressing
 - Hold against puncture site until bleeding stopped
 - Tape dressing in place

Using IV Protective Devices

- Penetrate skin, vein with over-the-needle device
- Slide catheter forward into vein while withdrawing needle
- Clicks into place once plastic guard reaches end
- Separate plastic guard from catheter hub
- Needle is retracted fully within protective sheath
Preparing Volume Control Setups

Open upper control valve
Open bottom flow clamp

External Jugular Vein Cannulation

- Benefits
 - Fairly easy to cannulate
 - Fluids & meds quickly reach central circulation & heart

- Disadvantages
 - Hard to access when managing patient's airway
 - Vein can "roll"
 - Vein can be positional
 - Extremely painful

- Complications
 - Same as with other veins
 - Risk of puncturing thoracic cavity
 - Structures can be damaged by accidental misplacement
Elderly Patients

- Prominent veins—less resistant skin
- Difficult to stabilize vein
- Veins fragile
- Remove tourniquet quickly
- Smaller, shorter venipuncture devices work best

Seizing or Moving Patients or Patients in Transport

- Steady extremity
- Look for biggest vein
- Penetrate during period of less movement.
- Hold little & ring fingers against patient’s extremity
- Once in—slide catheter in quickly

Seizing or Moving Patients or Patients in Transport

- Once in place—do not let go
- Use extra tape to secure cannula
- Use armboard or splint
- Wrap tubing & extremity proximal to site
Summary

- IV cannulation—placement of catheter into vein for purpose of administering blood, fluids, or medications &/or obtaining venous blood specimens
- Placement of IV line should not significantly delay transporting critically ill or injured patients to hospital
- Recommended IV solutions for use in prehospital setting—normal saline (0.9%) & lactated Ringer’s solution
- Crystalloid solutions quickly diffuse out of circulatory system
- 2 most common types of administration sets—microdrip, macrodrip

Summary

- Most commonly, plastic over-the-needle catheters are used in prehospital setting
- Noncritical patients—distal veins of dorsal aspect of hand & arms preferred
- Cardiac arrest—veins of antecubital fossa
- Patients in whom cannulating vein is difficult
 - Obese persons
 - Patients in shock or cardiac arrest
 - Chronic malnourished
 - Elderly patients
 - Small children

Summary

- When equipment selected—IV fluid checked
 - Right fluid
 - Not outdated
 - Clear
 - Bag has no leaks
- Continually employ infection control procedures
- Release tourniquet once IV tubing is connected
- Continually monitor patient for signs of improvement & signs of circulatory overload
- All IV techniques share number of complications